design charts
Recently Published Documents


TOTAL DOCUMENTS

439
(FIVE YEARS 39)

H-INDEX

26
(FIVE YEARS 3)

Author(s):  
Helena Barros ◽  
Joaquim Figueiras ◽  
Carla Ferreira ◽  
Mário Pimentel
Keyword(s):  

Author(s):  
Helena Barros ◽  
Joaquim Figueiras ◽  
Carla Ferreira ◽  
Mário Pimentel
Keyword(s):  

2021 ◽  
Vol 11 (24) ◽  
pp. 11625
Author(s):  
Qingfeng Meng ◽  
Xuyue Hu ◽  
Guanghui Chen ◽  
Peng Li ◽  
Zhi Wang

An analytical approach for the estimating of critical seismic acceleration of rock slopes was proposed in this study. Based on the 3D horn failure model, the critical seismic acceleration coefficient of rock slopes was conducted with the modified Hoek–Brown (MHB) failure criterion in the framework of upper-bound theory for the first time. The nonlinear Hoek–Brown failure criterion is incorporated into the three-dimensional rotational failure mechanism, and a generalized tangent technique is introduced and employed to convert the nonlinear Hoek–Brown failure criterion into a linear criterion. The critical seismic acceleration coefficients obtained from this study were validated by the numerical simulation results based on finite element limit analysis. The agreement showed that the proposed method is effective. Finally, design charts were provided for exceptional cases for practical use in rock engineering.


2021 ◽  
Vol 1 (2) ◽  
pp. 1-9
Author(s):  
Mohd. Imran Khan ◽  
◽  
Dr. Ahmad Ali Khan ◽  
Dr. Shalini Yadav ◽  
◽  
...  

In the present work, analysis of concrete pavements using ANSYS software has been attempted. ANSYS is a finite element method-based software. The concrete slab has been modeled with solid 45 brick element and spring elements for soil. Analysis was carried out for a wide range of load and slab soil combination. The soil as “Winkler type” represented by elastic springs and their stiffness was derived from modulus of sub-grade reaction. The influence of any particular base or sub base on edge stresses was not studied here. The model will be then subjected to number of varying input parameters like the change in the thickness of pavement slab, sub-grade material to winkler foundation, modulus of elasticity by adding metal chips in different percentage like 10%, 20%, 30% and also intensity of loads. It is aimed to compare the stresses of the model study with classical approach of Westergaards and IRC 58- 2002 method. Westergaards equation under estimate edge wheel load stresses when compared with those obtained from ANSYS. For generating the charts, edge loading condition was considered which is critical case for wheel load stresses. Also, it was aimed to compare the results with those given by IRC 58 – 2002 design charts. Design charts were developed in thesis work yield the same value of pavement thickness as that of IRC 58 – 2002 method.


Author(s):  
Mohd. Imran Khan ◽  
◽  
Dr. Ahmad Ali Khan ◽  

In the present work, analysis of concrete pavements using ANSYS software has been attempted. ANSYS is a finite element method-based software. The concrete slab has been modeled with solid 45 brick element and spring elements for soil. Analysis was carried out for a wide range of load and slab soil combination. The soil as “Winkler type” represented by elastic springs and their stiffness was derived from modulus of sub-grade reaction. The influence of any particular base or sub base on edge stresses was not studied here. The model will be then subjected to number of varying input parameters like the change in the thickness of pavement slab, sub-grade material to winkler foundation, modulus of elasticity by adding metal chips in different percentage like 10%, 20%, 30% and also intensity of loads. It is aimed to compare the stresses of the model study with classical approach of Westergaards and IRC 58- 2002 method. Westergaards equation under estimate edge wheel load stresses when compared with those obtained from ANSYS. For generating the charts, edge loading condition was considered which is critical case for wheel load stresses. Also, it was aimed to compare the results with those given by IRC 58 – 2002 design charts. Design charts were developed in thesis work yield the same value of pavement thickness as that of IRC 58 – 2002 method.


2021 ◽  
Vol 5 (8) ◽  
pp. 220
Author(s):  
Reza Moazed ◽  
Mohammad Amir Khozeimeh ◽  
Reza Fotouhi

In this study, a simplified approach that can be used for the selection of the design parameters of carbon and glass fiber reinforced composite beams is presented. Important design parameters including fiber angle orientation, laminate thickness, materials of construction, cross-sectional shape, and mass are considered. To allow for the integrated selection of these parameters, structural indices and efficiency metrics are developed and plotted in design charts. As the design parameters depend on mode of loading, normalized structural metrics are defined for axial, bending, torsional, and combined bending-torsional loading conditions. The design charts provide designers with an accurate and efficient approach for the determination of stiffness parameters and mass of laminated composite beams. Using the design charts, designers can readily determine optimum fiber direction, number of layers in a laminate, cross-sectional shape, and materials that will provide the desired mass and stiffness. The laminated composite beams were also analyzed through a detailed finite element analysis study. Three-dimensional solid elements were used for the finite element modelling of the beams. To confirm design accuracy, numerical results were compared with close-form solutions and results obtained from the design charts. To show the effectiveness of the design charts, the simplified method was utilized for increasing the bending and torsional stiffness of a laminated composite robotic arm. The results show that the proposed approach can be used to accurately and efficiently analyze composite beams that fall within the boundaries of the design charts.


Author(s):  
G. Patel ◽  
A. N. Nayak ◽  
A. K. L. Srivastava

The present paper reports an extensive study on dynamic instability characteristics of curved panels under linearly varying in-plane periodic loading employing finite element formulation with a quadratic isoparametric eight nodded element. At first, the influences of three types of linearly varying in-plane periodic edge loads (triangular, trapezoidal and uniform loads), three types of curved panels (cylindrical, spherical and hyperbolic) and six boundary conditions on excitation frequency and instability region are investigated. Further, the effects of varied parameters, such as shallowness parameter, span to thickness ratio, aspect ratio, and Poisson’s ratio, on the dynamic instability characteristics of curved panels with clamped–clamped–clamped–clamped (CCCC) and simply supported-free-simply supported-free (SFSF) boundary conditions under triangular load are studied. It is found that the above parameters influence significantly on the excitation frequency, at which the dynamic instability initiates, and the width of dynamic instability region (DIR). In addition, a comparative study is also made to find the influences of the various in-plane periodic loads, such as uniform, triangular, parabolic, patch and concentrated load, on the dynamic instability behavior of cylindrical, spherical and hyperbolic panels. Finally, typical design charts showing DIRs in non-dimensional forms are also developed to obtain the excitation frequency and instability region of various frequently used isotropic clamped spherical panels of any dimension, any type of linearly varying in-plane load and any isotropic material directly from these charts without the use of any commercially available finite element software or any developed complex model.


Sign in / Sign up

Export Citation Format

Share Document