Reflection Principles in Fragments of Peano Arithmetic

1987 ◽  
Vol 33 (4) ◽  
pp. 317-333 ◽  
Author(s):  
Hiroakira Ono
2013 ◽  
Vol 78 (4) ◽  
pp. 1135-1163 ◽  
Author(s):  
Wei Li

AbstractIn this paper, we investigate the existence of a Friedberg numbering in fragments of Peano Arithmetic and initial segments of Gödel's constructible hierarchy Lα, where α is Σ1 admissible. We prove that(1) Over P− + BΣ2, the existence of a Friedberg numbering is equivalent to IΣ2, and(2) For Lα, there is a Friedberg numbering if and only if the tame Σ2 projectum of α equals the Σ2 cofinality of α.


1989 ◽  
Vol 115 ◽  
pp. 165-183 ◽  
Author(s):  
C.T. Chong

This work is inspired by the recent paper of Mytilinaios and Slaman [9] on the infinite injury priority method. It may be considered to fall within the general program of the study of reverse recursion theory: What axioms of Peano arithmetic are required or sufficient to prove theorems in recursion theory? Previous contributions to this program, especially with respect to the finite and infinite injury priority methods, can be found in the works of Groszek and Mytilinaios [4], Groszek and Slaman [5], Mytilinaios [8], Slaman and Woodin [10]. Results of [4] and [9], for example, together pinpoint the existence of an incomplete, nonlow r.e. degree to be provable only within some fragment of Peano arithmetic at least as strong as P- + IΣ2. Indeed an abstract principle on infinite strategies, such as that on the construction of an incomplete high r.e. degree, was introduced in [4] and shown to be equivalent to Σ2 induction over the base theory P- + IΣ0 of Peano arithmetic.


1982 ◽  
Vol 47 (4) ◽  
pp. 721-733 ◽  
Author(s):  
Ulf R. Schmerl

The ω-rule,with the meaning “if the formula A(n) is provable for all n, then the formula ∀xA(x) is provable”, has a certain formal similarity with a uniform reflection principle saying “if A(n) is provable for all n, then ∀xA(x) is true”. There are indeed some hints in the literature that uniform reflection has sometimes been understood as a “formalized ω-rule” (cf. for example S. Feferman [1], G. Kreisel [3], G. H. Müller [7]). This similarity has even another aspect: replacing the induction rule or scheme in Peano arithmetic PA by the ω-rule leads to a complete and sound system PA∞, where each true arithmetical statement is provable. In [2] Feferman showed that an equivalent system can be obtained by erecting on PA a transfinite progression of formal systems PAα based on iterations of the uniform reflection principle according to the following scheme:Then T = (∪dЄ, PAd, being Kleene's system of ordinal notations, is equivalent to PA∞. Of course, T cannot be an axiomatizable theory.


2019 ◽  
Vol 84 (02) ◽  
pp. 849-869 ◽  
Author(s):  
EVGENY KOLMAKOV ◽  
LEV BEKLEMISHEV

AbstractA formula φ is called n-provable in a formal arithmetical theory S if φ is provable in S together with all true arithmetical ${{\rm{\Pi }}_n}$-sentences taken as additional axioms. While in general the set of all n-provable formulas, for a fixed $n > 0$, is not recursively enumerable, the set of formulas φ whose n-provability is provable in a given r.e. metatheory T is r.e. This set is deductively closed and will be, in general, an extension of S. We prove that these theories can be naturally axiomatized in terms of progressions of iterated local reflection principles. In particular, the set of provably 1-provable sentences of Peano arithmetic $PA$ can be axiomatized by ${\varepsilon _0}$ times iterated local reflection schema over $PA$. Our characterizations yield additional information on the proof-theoretic strength of these theories (w.r.t. various measures of it) and on their axiomatizability. We also study the question of speed-up of proofs and show that in some cases a proof of n-provability of a sentence can be much shorter than its proof from iterated reflection principles.


Sign in / Sign up

Export Citation Format

Share Document