axiomatizable theory
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
pp. 146-157
Author(s):  
Mark Wilson

The grander metaphysical schemes popular in Hertz’s era often suppressed conceptual innovation in manifestly unhelpful ways. In counterreaction, Hertz and his colleagues stressed the raw pragmatic advantages of “good theory” considered as a functional whole and rejected the armchair meditations upon individual words characteristic of the metaphysical imperatives they spurned. Rudolf Carnap’s later rejection of all forms of “metaphysics” attempts to broaden these methodological tenets to a wider canvas. In doing so, the notion of an integrated, axiomatizable “theory” became the shaping tenet within our most conception of how the enterprise of “rigorous conceptual analysis” should be prosecuted. Although Carnap hoped to suppress all forms of metaphysics, large and small, through these means, in more recent times, closely allied veins of “theory T thinking” have instead encouraged a revival of grand metaphysical speculation that embodies many of the suppressive doctrines that Hertz’s generation rightly resisted (I have in mind the school of “analytic metaphysics” founded by David Lewis). The proper corrective to these inflated ambitions lies in directly examining the proper sources of descriptive effectiveness in the liberal manner of a multiscalar architecture.


Author(s):  
Cristian S. Calude

The standard definition of randomness as considered in probability theory and used, for example, in quantum mechanics, allows one to speak of a process (such as tossing a coin, or measuring the diagonal polarization of a horizontally polarized photon) as being random. It does not allow one to call a particular outcome (or string of outcomes, or sequence of outcomes) ‘random’, except in an intuitive, heuristic sense. Information-theoretic complexity makes this possible. An algorithmically random string is one which cannot be produced by a description significantly shorter than itself; an algorithmically random sequence is one whose initial finite segments are almost random strings. Gödel’s incompleteness theorem states that every axiomatizable theory which is sufficiently rich and sound is incomplete. Chaitin’s information-theoretic version of Gödel’s theorem goes a step further, revealing the reason for incompleteness: a set of axioms of complexity N cannot yield a theorem that asserts that a specific object is of complexity substantially greater than N. This suggests that incompleteness is not only natural, but pervasive; it can no longer be ignored by everyday mathematics. It also provides a theoretical support for a quasi-empirical and pragmatic attitude to the foundations of mathematics. Information-theoretic complexity is also relevant to physics and biology. For physics it is convenient to reformulate it as the size of the shortest message specifying a microstate, uniquely up to the assumed resolution. In this way we get a rigorous, entropy-like measure of disorder of an individual, microscopic, definite state of a physical system. The regulatory genes of a developing embryo can be ultimately conceived as a program for constructing an organism. The information contained by this biochemical computer program can be measured by information-theoretic complexity.


2006 ◽  
Vol 71 (2) ◽  
pp. 624-638 ◽  
Author(s):  
Leszek Aleksander Kołodziejczyk

AbstractModifying the methods of Z. Adamowicz's paper Herbrand consistency and bounded arithmetic [3] we show that there exists a number n such that ⋃mSm (the union of the bounded arithmetic theories Sm) does not prove the Herbrand consistency of the finitely axiomatizable theory S3n


1991 ◽  
Vol 32 (3) ◽  
pp. 458-493 ◽  
Author(s):  
Jody Azzouni
Keyword(s):  

1989 ◽  
Vol 54 (3) ◽  
pp. 921-927 ◽  
Author(s):  
David Marker

Recall that a theory is said to be almost strongly minimal if in every model every element is in the algebraic closure of a strongly minimal set. In 1970 Hodges and Macintyre conjectured that there is a natural number n such that every ℵ0-categorical almost strongly minimal theory is Σn axiomatizable. Recently Ahlbrandt and Baldwin [A-B] proved that if T is ℵ0-categorical and almost strongly minimal, then T is Σn axiomatizable for some n. This result also follows from Ahlbrandt and Ziegler's results on quasifinite axiomatizability [A-Z]. In this paper we will refute Hodges and Macintyre's conjecture by showing that for each n there is an ℵ0-categorical almost strongly minimal theory which is not Σn axiomatizable.Before we begin we should note that in all these examples the complexity of the theory arises from the complexity of the definition of the strongly minimal set. It is still open whether the conjecture is true if we allow a predicate symbol for the strongly minimal set.We will prove the following result.Theorem. For every n there is an almost strongly minimal ℵ0-categorical theory T with models M and N such that N is Σn elementary but not Σn + 1 elementary.To show that these theories yield counterexamples to the conjecture we apply the following result of Chang [C].Theorem. If T is a Σn axiomatizable theory categorical in some infinite power, M and N are models of T and N is a Σn elementary extension of M, then N is an elementary extension of M.


1982 ◽  
Vol 47 (4) ◽  
pp. 721-733 ◽  
Author(s):  
Ulf R. Schmerl

The ω-rule,with the meaning “if the formula A(n) is provable for all n, then the formula ∀xA(x) is provable”, has a certain formal similarity with a uniform reflection principle saying “if A(n) is provable for all n, then ∀xA(x) is true”. There are indeed some hints in the literature that uniform reflection has sometimes been understood as a “formalized ω-rule” (cf. for example S. Feferman [1], G. Kreisel [3], G. H. Müller [7]). This similarity has even another aspect: replacing the induction rule or scheme in Peano arithmetic PA by the ω-rule leads to a complete and sound system PA∞, where each true arithmetical statement is provable. In [2] Feferman showed that an equivalent system can be obtained by erecting on PA a transfinite progression of formal systems PAα based on iterations of the uniform reflection principle according to the following scheme:Then T = (∪dЄ, PAd, being Kleene's system of ordinal notations, is equivalent to PA∞. Of course, T cannot be an axiomatizable theory.


1982 ◽  
Vol 47 (3) ◽  
pp. 587-604 ◽  
Author(s):  
Julia Knight ◽  
Mark Nadel

If is a countable recursively saturated structure and T is a recursively axiomatizable theory that is consistent with Th(), then it is well known that can be expanded to a recursively saturated model of T [7, p. 186]. This is what has made recursively saturated models useful in model theory. Recursive saturation is the weakest notion of saturation for which this expandability result holds. In fact, if is a countable model of Pr = Th(ω, +), then can be expanded to a model of first order Peano arithmetic P just in case is recursively saturated (see [3]).In this paper we investigate two natural sets of Turing degrees that tell a good deal about the expandability of a given structure. If is a recursively saturated structure, I() consists of the degrees of sets that are recursive in complete types realized in . The second set of degrees, D(), consists of the degrees of sets S such that is recursive in S-saturated. In general, I() ⊆ D(). Moreover, I() is obviously an “ideal” of degrees. For countable structures , D() is “closed” in the following sense: For any class C ⊆ 2ω, if C is co-r.e. in S for some set S such that , then there is some σ ∈ C such that . For uncountable structures , we do not know whether D() must be closed.


1981 ◽  
Vol 46 (1) ◽  
pp. 101-120 ◽  
Author(s):  
James H. Schmerl

AbstractEvery ℵ0-categorical partially ordered set of finite width has a finitely axiomatizable theory. Every ℵ0-categorical partially ordered set of finite weak width has a decidable theory. This last statement constitutes a major portion of the complete (with three exceptions) characterization of those finite partially ordered sets for which any ℵ0-categorical partially ordered set not embedding one of them has a decidable theory.


1958 ◽  
Vol 23 (4) ◽  
pp. 389-392 ◽  
Author(s):  
J. R. Shoenfield

In this paper we answer some of the questions left open in [2]. We use the terminology of [2]. In particular, a theory will be a formal system formulated within the first-order calculus with identity. A theory is identified with the set of Gödel numbers of the theorems of the theory. Thus Craig's theorem [1] asserts that a theory is axiomatizable if and only if it is recursively enumerable.In [2], Feferman showed that if A is any recursively enumerable set, then there is an axiomatizable theory T having the same degree of unsolvability as A. (This result was proved independently by D. B. Mumford.) We show in Theorem 2 that if A is not recursive, then T may be chosen essentially undecidable. This depends on Theorem 1, which is a result on recursively enumerable sets of some independent interest.Our second result, given in Theorem 3, gives sufficient conditions for a theory to be creative. These conditions are more general than those given by Feferman. In particular, they show that the system of Kreisel described in [2] is creative.


Sign in / Sign up

Export Citation Format

Share Document