scholarly journals Maximal sets and fragments of Peano arithmetic

1989 ◽  
Vol 115 ◽  
pp. 165-183 ◽  
Author(s):  
C.T. Chong

This work is inspired by the recent paper of Mytilinaios and Slaman [9] on the infinite injury priority method. It may be considered to fall within the general program of the study of reverse recursion theory: What axioms of Peano arithmetic are required or sufficient to prove theorems in recursion theory? Previous contributions to this program, especially with respect to the finite and infinite injury priority methods, can be found in the works of Groszek and Mytilinaios [4], Groszek and Slaman [5], Mytilinaios [8], Slaman and Woodin [10]. Results of [4] and [9], for example, together pinpoint the existence of an incomplete, nonlow r.e. degree to be provable only within some fragment of Peano arithmetic at least as strong as P- + IΣ2. Indeed an abstract principle on infinite strategies, such as that on the construction of an incomplete high r.e. degree, was introduced in [4] and shown to be equivalent to Σ2 induction over the base theory P- + IΣ0 of Peano arithmetic.

2013 ◽  
Vol 78 (4) ◽  
pp. 1135-1163 ◽  
Author(s):  
Wei Li

AbstractIn this paper, we investigate the existence of a Friedberg numbering in fragments of Peano Arithmetic and initial segments of Gödel's constructible hierarchy Lα, where α is Σ1 admissible. We prove that(1) Over P− + BΣ2, the existence of a Friedberg numbering is equivalent to IΣ2, and(2) For Lα, there is a Friedberg numbering if and only if the tame Σ2 projectum of α equals the Σ2 cofinality of α.


2017 ◽  
Vol 10 (3) ◽  
pp. 455-480 ◽  
Author(s):  
BARTOSZ WCISŁO ◽  
MATEUSZ ŁEŁYK

AbstractWe prove that the theory of the extensional compositional truth predicate for the language of arithmetic with Δ0-induction scheme for the truth predicate and the full arithmetical induction scheme is not conservative over Peano Arithmetic. In addition, we show that a slightly modified theory of truth actually proves the global reflection principle over the base theory.


1976 ◽  
Vol 41 (3) ◽  
pp. 681-694
Author(s):  
Anne Leggett ◽  
Richard A. Shore

One general program of α-recursion theory is to determine as much as possible of the lattice structure of (α), the lattice of α-r.e. sets under inclusion. It is hoped that structure results will shed some light on whether or not the theory of (α) is decidable with respect to a suitable language for lattice theory. Fix such a language ℒ.Many of the basic results about the lattice structure involve various sorts of simple α-r.e. sets (we use definitions which are definable in ℒ over (α)). It is easy to see that simple sets exist for all admissible α. Chong and Lerman [1] have found some necessary and some sufficient conditions for the existence of hhsimple α-r.e. sets, although a complete determination of these conditions has not yet been made. Lerman and Simpson [9] have obtained some partial results concerning r-maximal α-r.e. sets. Lerman [6] has shown that maximal α-r.e. sets exist iff a is a certain sort of constructibly countable ordinal. Lerman [5] has also investigated the congruence relations, filters, and ideals of (α). Here various sorts of simple sets have also proved to be vital tools. The importance of simple α-r.e. sets to the study of the lattice structure of (α) is hence obvious.Lerman [6, Q22] has posed the following problem: Find an admissible α for which all simple α-r.e. sets have the same 1-type with respect to the language ℒ. The structure of (α) for such an α would be much less complicated than that of (ω). Lerman [7] showed that such an α could not be a regular cardinal of L. We show that there is no such admissible α.


1983 ◽  
Vol 48 (3) ◽  
pp. 662-669 ◽  
Author(s):  
Robert E. Byerly

It is known [4, Theorem 11-X(b)] that there is only one acceptable universal function up to recursive isomorphism. It follows from this that sets definable in terms of a universal function alone are specified uniquely up to recursive isomorphism. (An example is the set K, which consists of all n such that {n}(n) is defined, where λn, m{n}(m) is an acceptable universal function.) Many of the interesting sets constructed and studied by recursion theorists, however, have definitions which involve additional notions, such as a specific enumeration of the graph of a universal function. In particular, many of these definitions make use of the interplay between the purely number-theoretic properties of indices of partial recursive functions and their purely recursion-theoretic properties.This paper concerns r.e. sets that can be defined using only a universal function and some purely number-theoretic concepts. In particular, we would like to know when certain recursion-theoretic properties of r.e. sets definable in this way are independent of the particular choice of universal function (equivalently, independent of the particular way in which godel numbers are identified with natural numbers).We will first develop a suitable model-theoretic framework for discussing this question. This will enable us to classify the formulas defining r.e. sets by their logical complexity. (We use the number of alternations of quantifiers in the prenex form of a formula as a measure of logical complexity.) We will then be able to examine the question at each level.This work is an approach to the question of when the recursion-theoretic properties of an r.e. set are independent of the particular parameters used in its construction. As such, it does not apply directly to the construction techniques most commonly used at this time for defining particular r.e. sets, e.g., the priority method. A more direct attack on this question for these techniques is represented by such works as [3] and [5]. However, the present work should be of independent interest to the logician interested in recursion theory.


1976 ◽  
Vol 41 (2) ◽  
pp. 513-530 ◽  
Author(s):  
Robert I. Soare

One of the most important and distinctive tools in recursion theory has been the priority method whereby a recursively enumerable (r.e.) set A is constructed by stages to satisfy a sequence of conditions {Rn}n∈ω called requirements. If n < m, requirement Rn is given priority over Rm and action taken for Rm at some stage s may at a later stage t > s be undone for the sake of Rn thereby injuring Rm at stage t. The first priority method was invented by Friedberg [2] and Muchnik [11] to solve Post's problem and is characterized by the fact that each requirement is injured at most finitely often.Shoenfield [20, Lemma 1], and then independently Sacks [17] and Yates [25] invented a much more powerful method in which a requirement may be injured infinitely often, and the method was applied and refined by Sacks [15], [16], [17], [18], [19] and Yates [25], [26] to obtain many deep results on r.e. sets and their degrees. In spite of numerous simplifications and variations this infinite injury method has never been as well understood as the finite injury method because of its apparently greater complexity.The purpose of this paper is to reduce the Sacks method to two easily understood lemmas whose proofs are very similar to the finite injury case. Using these lemmas we can derive all the results of Sacks on r.e. degrees, and some by Yates and Robinson as well, in a manner accessible to the nonspecialist. The heart of the method is an ingenious observation of Lachlan [7] which is combined with a further simplification of our own.


1990 ◽  
Vol 55 (1) ◽  
pp. 194-206 ◽  
Author(s):  
Robert S. Lubarsky

The program of reverse mathematics has usually been to find which parts of set theory, often used as a base for other mathematics, are actually necessary for some particular mathematical theory. In recent years, Slaman, Groszek, et al, have given the approach a new twist. The priority arguments of recursion theory do not naturally or necessarily lead to a foundation involving any set theory; rather, Peano Arithmetic (PA) in the language of arithmetic suffices. From this point, the appropriate subsystems to consider are fragments of PA with limited induction. A theorem in this area would then have the form that certain induction axioms are independent of, necessary for, or even equivalent to a theorem about the Turing degrees. (See, for examples, [C], [GS], [M], [MS], and [SW].)As go the integers so go the ordinals. One motivation of α-recursion theory (recursion on admissible ordinals) is to generalize classical recursion theory. Since induction in arithmetic is meant to capture the well-foundedness of ω, the corresponding axiom in set theory is foundation. So reverse mathematics, even in the context of a set theory (admissibility), can be changed by the influence of reverse recursion theory. We ask not which set existence axioms, but which foundation axioms, are necessary for the theorems of α-recursion theory.When working in the theory KP – Foundation Schema (hereinafter called KP−), one should really not call it α-recursion theory, which refers implicitly to the full set of axioms KP. Just as the name β-recursion theory refers to what would be α-recursion theory only it includes also inadmissible ordinals, we call the subject of study here γ-recursion theory. This answers a question by Sacks and S. Friedman, “What is γ-recursion theory?”


Sign in / Sign up

Export Citation Format

Share Document