An inverse coefficient problem for a quasilinear parabolic equation with periodic boundary and integral overdetermination condition

2014 ◽  
Vol 38 (5) ◽  
pp. 851-867 ◽  
Author(s):  
Irem Baglan ◽  
Fatma Kanca
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Fatma Kanca

This paper investigates the inverse problem of finding a time-dependent diffusion coefficient in a parabolic equation with the periodic boundary and integral overdetermination conditions. Under some assumption on the data, the existence, uniqueness, and continuous dependence on the data of the solution are shown by using the generalized Fourier method. The accuracy and computational efficiency of the proposed method are verified with the help of the numerical examples.


2018 ◽  
Vol 26 (3) ◽  
pp. 349-368 ◽  
Author(s):  
Alemdar Hasanov

AbstractThis paper studies the Lipschitz continuity of the Fréchet gradient of the Tikhonov functional {J(k):=(1/2)\lVert u(0,\cdot\,;k)-f\rVert^{2}_{L^{2}(0,T)}} corresponding to an inverse coefficient problem for the {1D} parabolic equation {u_{t}=(k(x)u_{x})_{x}} with the Neumann boundary conditions {-k(0)u_{x}(0,t)=g(t)} and {u_{x}(l,t)=0}. In addition, compactness and Lipschitz continuity of the input-output operator\Phi[k]:=u(x,t;k)\lvert_{x=0^{+}},\quad\Phi[\,\cdot\,]:\mathcal{K}\subset H^{1% }(0,l)\mapsto H^{1}(0,T),as well as solvability of the regularized inverse problem and the Lipschitz continuity of the Fréchet gradient of the Tikhonov functional are proved. Furthermore, relationships between the sufficient conditions for the Lipschitz continuity of the Fréchet gradient and the regularity of the weak solution of the direct problem as well as the measured output {f(t):=u(0,t;k)} are established. One of the derived lemmas also introduces a useful application of the Lipschitz continuity of the Fréchet gradient. This lemma shows that an important advantage of gradient methods comes when dealing with the functionals of class {C^{1,1}(\mathcal{K})}. Specifically, this lemma asserts that if {J\in C^{1,1}(\mathcal{K})} and {\{k^{(n)}\}\subset\mathcal{K}} is the sequence of iterations obtained by the Landweber iteration algorithm {k^{(n+1)}=k^{(n)}+\omega_{n}J^{\prime}(k^{(n)})}, then for {\omega_{n}\in(0,2/L_{g})}, where {L_{g}>0} is the Lipschitz constant, the sequence {\{J(k^{(n)})\}} is monotonically decreasing and {\lim_{n\to\infty}\lVert J^{\prime}(k^{(n)})\rVert=0}.


Sign in / Sign up

Export Citation Format

Share Document