Summation formulae for twisted cubic q ‐series

2019 ◽  
Vol 42 (6) ◽  
pp. 1831-1843 ◽  
Author(s):  
Wenchang Chu

2021 ◽  
Vol 89 (10) ◽  
pp. 2211-2233 ◽  
Author(s):  
Alexander A. Davydov ◽  
Stefano Marcugini ◽  
Fernanda Pambianco


2011 ◽  
Vol 59 (3-4) ◽  
pp. 359-400 ◽  
Author(s):  
P. L. Butzer ◽  
P. J. S. G. Ferreira ◽  
G. Schmeisser ◽  
R. L. Stens


2018 ◽  
Vol 26 (2) ◽  
pp. 99-111
Author(s):  
Xiaoyuan Wang ◽  
Wenchang Chu

AbstractThe q-derivative operator approach is illustrated by reviewing several typical summation formulae of terminating basic hypergeometric series.



Author(s):  
T.G. Ergashev ◽  
A. Hasanov

In the present work, we investigate the Holmgren problem for an multidimensional elliptic equation with several singular coefficients. We use a fundamental solution of the equation, containing Lauricella’s hypergeometric function in many variables. Then using an «abc» method, the uniqueness for the solution of the Holmgren problem is proved. Applying a method of Green’s function, we are able to find the solution of the problem in an explicit form. Moreover, decomposition and summation formulae, formulae of differentiation and some adjacent relations for Lauricella’s hypergeometric functions in many variables were used in order to find the explicit solution for the formulated problem. В данной работе мы исследуем задачу Холмгрена для многомерного эллиптического уравнения с несколькими сингулярными коэффициентами. Мы используем фундаментальное решение уравнения, содержащее гипергеометрическую функцию Лауричеллы от многих переменных. Затем методом «abc» доказывается единственность решения проблемы Холмгрена. Применяя метод функции Грина, мы можем найти решение задачи в явном виде. Более того, формулы разложения и суммирования, формулы дифференцирования и некоторые смежные соотношения для гипергеометрических функций Лауричеллы от многих переменных были использованы для нахождения явного решения поставленной задачи.





Author(s):  
Gianni Manno ◽  
Paweł Nurowski ◽  
Katja Sagerschnig

AbstractA contact twisted cubic structure$$({\mathcal M},\mathcal {C},{\varvec{\upgamma }})$$ ( M , C , γ ) is a 5-dimensional manifold $${\mathcal M}$$ M together with a contact distribution $$\mathcal {C}$$ C and a bundle of twisted cubics $${\varvec{\upgamma }}\subset \mathbb {P}(\mathcal {C})$$ γ ⊂ P ( C ) compatible with the conformal symplectic form on $$\mathcal {C}$$ C . The simplest contact twisted cubic structure is referred to as the contact Engel structure; its symmetry group is the exceptional group $$\mathrm {G}_2$$ G 2 . In the present paper we equip the contact Engel structure with a smooth section $$\sigma : {\mathcal M}\rightarrow {\varvec{\upgamma }}$$ σ : M → γ , which “marks” a point in each fibre $${\varvec{\upgamma }}_x$$ γ x . We study the local geometry of the resulting structures $$({\mathcal M},\mathcal {C},{\varvec{\upgamma }}, \sigma )$$ ( M , C , γ , σ ) , which we call marked contact Engel structures. Equivalently, our study can be viewed as a study of foliations of $${\mathcal M}$$ M by curves whose tangent directions are everywhere contained in $${\varvec{\upgamma }}$$ γ . We provide a complete set of local invariants of marked contact Engel structures, we classify all homogeneous models with symmetry groups of dimension $$\ge 6$$ ≥ 6 up to local equivalence, and we prove an analogue of the classical Kerr theorem from Relativity.



1980 ◽  
Vol 77 ◽  
pp. 145-166 ◽  
Author(s):  
Toshiaki Suzuki

During 1934-1936, W. L. Ferrar investigated the relation between summation formulae and Dirichlet series with functional equations, inspired by Voronoi’s works (1904) on summation formula with respect to the numbers of divisors. In [11] A. Weil showed that the automorphic properties of theta series are expressed by generalized Poisson summation formulae with respect to the so-called Weil representation. On the other hand, T. Kubota, in his study of the reciprocity law in a number field, defined a generalized theta series and a generalized Weil type representation of SL(2, C) and obtained similar results to those of A. Weil (1970-1976, [5], [6], [7]). The methods, used by W. L. Ferrar and T. Kubota, to obtain (generalized Poisson) summation formulae depend similarly on functional equations of Dirichlet series (attached to the generalized theta series).



1971 ◽  
Vol 97 (2-3) ◽  
pp. 325-330 ◽  
Author(s):  
J. H. Pollard

In his paper of 1941, Seal included details of some experiments he performed in an attempt to estimate the appropriate number of degrees of freedom for the chi-square goodness-of-fit test of a summation formula graduation. These results are referred to by Tetley and by Benjamin and Haycocks in their textbooks when they mention the difficulty of determining the number of degrees of freedom or mean chi-square value.



1977 ◽  
Vol 20 (3) ◽  
pp. 369-375 ◽  
Author(s):  
Arun Verma

In 1927, Jackson [5] obtained a transformation connecting awhere N is any integer, with aviz.,1where | q | > l and |qγ-α-βN| > l.



2020 ◽  
Vol 44 (1) ◽  
pp. 239-252
Author(s):  
Wenchang Chu


Sign in / Sign up

Export Citation Format

Share Document