On the wave solutions of time‐fractional Sawada‐Kotera‐Ito equation arising in shallow water

2020 ◽  
Vol 44 (1) ◽  
pp. 583-592
Author(s):  
Rajarama Mohan Jena ◽  
Snehashish Chakraverty ◽  
Subrat Kumar Jena ◽  
Hamid M. Sedighi
2017 ◽  
Vol 5 (1) ◽  
pp. 21 ◽  
Author(s):  
Faisal Hawlader ◽  
Dipankar Kumar

In this present work, we have established exact solutions for (2+1) and (3+1) dimensional extended shallow-water wave equations in-volving parameters by applying the improved (G’/G) -expansion method. Abundant traveling wave solutions with arbitrary parameter are successfully obtained by this method, and these wave solutions are expressed in terms of hyperbolic, trigonometric, and rational functions. The improved (G’/G) -expansion method is simple and powerful mathematical technique for constructing traveling wave, solitary wave, and periodic wave solutions of the nonlinear evaluation equations which arise from application in engineering and any other applied sciences. We also present the 3D graphical description of the obtained solutions for different cases with the aid of MAPLE 17.


2020 ◽  
Vol 30 (03) ◽  
pp. 2050036 ◽  
Author(s):  
Jibin Li ◽  
Guanrong Chen ◽  
Jie Song

For three two-component shallow water wave models, from the approach of dynamical systems and the singular traveling wave theory developed in [Li & Chen, 2007], under different parameter conditions, all possible bounded solutions (solitary wave solutions, pseudo-peakons, periodic peakons, as well as smooth periodic wave solutions) are derived. More than 19 explicit exact parametric representations are obtained. Of more interest is that, for the integrable two-component generalization of the Camassa–Holm equation, it is found that its [Formula: see text]-traveling wave system has a family of pseudo-peakon wave solutions. In addition, its [Formula: see text]-traveling wave system has two families of uncountably infinitely many solitary wave solutions. The new results complete a recent study by Dutykh and Ionescu-Kruse [2016].


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
M. M. Rashidi ◽  
D. D. Ganji ◽  
S. Dinarvand

The homotopy analysis method (HAM) is applied to obtain the approximate traveling wave solutions of the coupled Whitham-Broer-Kaup (WBK) equations in shallow water. Comparisons are made between the results of the proposed method and exact solutions. The results show that the homotopy analysis method is an attractive method in solving the systems of nonlinear partial differential equations.


1999 ◽  
Vol 54 (3-4) ◽  
pp. 272-274
Author(s):  
Woo-Pyo Hong ◽  
Young-Dae Jung

We perform a computerized symbolic computation to find some general solitonic solutions for the general fifth-order shal-low water-wave models. Applying the tanh-typed method, we have found certain new exact solitary wave solutions. The pre-viously published solutions turn out to be special cases with restricted model parameters.


Sign in / Sign up

Export Citation Format

Share Document