Comparison of image reconstruction by using near-field and far-field data for an imperfect conductor

2001 ◽  
Vol 11 (2) ◽  
pp. 69-73
Author(s):  
Chien-Ching Chiu ◽  
Wei-Ting Chen
2002 ◽  
Vol 50 (3) ◽  
pp. 408-410 ◽  
Author(s):  
F. Las-Heras ◽  
B. Galocha ◽  
J.L. Besada

Author(s):  
Francesco D'Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi

2016 ◽  
Vol 60 ◽  
pp. 36-42 ◽  
Author(s):  
Gang Bao ◽  
Peijun Li ◽  
Yuliang Wang

Geophysics ◽  
1999 ◽  
Vol 64 (6) ◽  
pp. 1689-1697 ◽  
Author(s):  
Partha S. Routh ◽  
Douglas W. Oldenburg

We present a technique for inverting controlled source audio‐frequency magnetotelluric (CSAMT) data to recover a 1-D conductivity structure. The earth is modeled as a set of horizontal layers with constant conductivity, and the data are apparent resistivities and phases computed from orthogonal electric and magnetic fields due to a finite dipole source. The earth model has many layers compared to the number of data points, and therefore the solution is nonunique. Among the possible solutions, we seek a model with desired character by minimizing a particular model objective function. Traditionally, CSAMT data are inverted either by using the far‐field data where magnetotelluric (MT) equations are valid or by correcting the near‐field data to an equivalent plane‐wave approximation. Here, we invert both apparent resistivity and phase data from the near‐field transition zone and the far‐field regions in the full CSAMT inversion without any correction. Our inversion is compared with that obtained by inverting near‐field corrected data using an MT algorithm. Both synthetic and field data examples indicate that a full CSAMT inversion provides improved information about subsurface conductivity.


Sign in / Sign up

Export Citation Format

Share Document