coupling loss
Recently Published Documents


TOTAL DOCUMENTS

324
(FIVE YEARS 44)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Peng Gao ◽  
Yuxiang He ◽  
Hongjun Ma ◽  
V.A. Anvar ◽  
Jianfeng Huang ◽  
...  

Abstract Given the low price and relatively high transition temperature (39 K) of MgB2 conductor, MgB2-based superconductors are a potential candidate for the lower field fusion coils, such as Poloidal Field (PF) coils, Correction Coils (CC) and Feeders. However, to date, the application of MgB2 is limited to demonstrators in a low magnetic field of up to 5 T and at temperatures of up to 10 to 20 K, relying on cryogen-free, helium gas or liquid hydrogen cooling, which significantly reduce the cost of cryogenic systems. To demonstrate the feasibility and performance verification of large size MgB2 PF conductors based on ITER and CFETR requirements, a 4th-stage subsize MgB2 Cable-In-Conduit Conductor (CICC) cable sample is made at the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The CICC contains 96 in-situ MgB2 superconducting wires, manufactured by Western Superconducting Technology Ltd. (WST) and 48 copper wires. The critical current of the sub-size cables and MgB2 witness wires are examined with different background magnetic fields at 4.2 K. In addition, the AC loss is measured utilizing magnetization and calorimetric methods. To further clarify the influence of electromagnetic force on the AC loss performance, the cable sample is pressed transversely at room temperature and then inserted into a dipole magnet for AC loss measurement at 4.2 K. The critical current at 4.2 K of the subsize MgB2 CICC cable shows 20% degradation compared to the witness wires at 2 T background magnetic field. However, no further critical current degradation is visible during ramping up and down the magnetic field. The coupling loss time constant for 1 T background magnetic field amounts to 480 ms. No significant effect of the applied transverse stress on the coupling loss is observed between 0 and 10 MPa.


Author(s):  
Volodymyr Korsun ◽  
Anatolii Tychynskyi

Background. Technology neutrality is widely used in frequency bands, where communication systems are evolving, but there are strict restrictions on the parameters and deployment of base stations of different technologies using adjacent channels. Ways to mitigate this effect have not been sufficiently studied and require further analysis and development. Objective. The purpose of this article is to investigate the methodology for obtaining technical conditions of technological neutrality with minimum coupling loss method to determine the value of additional filtering requirements and present the results of practical implementation of this technique. Methods. The method of detailed power analysis of frequency characteristics of filters for base stations’ transmitter and receiver is applied. Results. The article presents the results of obtaining minimal guard band and additional filtering requirements in the adjacent channels of transmitter and receiver belonging to different technologies. Examples of practical implementation of the minimum guard band and frequency characteristics of additional filters are given. Conclusions. The general method of determining the technical conditions for ensuring technology neutrality is presented and the value of the minimal required guard band between the adjacent transmitter and receiver channels is obtained.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3457
Author(s):  
Jihoon Choi ◽  
Heeso Noh

We numerically demonstrated single-port coherent perfect loss (CPL) with a Fabry–Perot resonator in a photonic crystal (PC) nanobeam by using a perfect magnetic conductor (PMC)-like boundary. The CPL mode with even symmetry can be reduced to a single-port CPL when a PMC boundary is applied. The boundary which acts like a PMC boundary, here known as a PMC-like boundary, and can be realized by adjusting the phase shift of the reflection from the PC when the wavelength of the light is within the photonic bandgap wavelength range. We designed and optimized simple Fabry–Perot resonator and coupler in nanobeam to get the PMC-like boundary. To satisfy the loss condition in CPL, we controlled the coupling loss in the resonator by modifying the lattice constant of the PC used for coupling. By optimizing the coupling loss, we achieved zero reflection (CPL) in a single port with a PMC-like boundary.


Author(s):  
Ju Ho Kim ◽  
Chin-Wook Chung

Abstract We investigated the plasma and electrical characteristics depending on the antenna position in an inductively coupled plasma with a passive resonant antenna. When the powered antenna and passive resonant antenna are installed near the top plate and in the middle of the cylindrical reactor (Setup A), respectively, the ion density at the resonance is about 2.4 times to 9 times higher than that at non-resonance. This is explained by the reduction in power loss in the powered antenna (including the matching circuits) and the increase in power absorbed by the plasma discharge. However, when the powered antenna and passive resonant antenna are interchanged (Setup B), the ion density at the resonance is not significantly different from that at the non-resonance. When RF power is changed from 50 W to 200 W, the ion density at the resonance of Setup B is 1.6 times to 5.4 times higher than at the non-resonance of Setup A. To analyse this difference, the profile of the z-axis ion density is measured and the electric and magnetic field simulations are investigated. The results are discussed along with the electron kinetics effect and the coupling loss between the antenna and the metal plate.


Author(s):  
Naoyuki Amemiya ◽  
Mao Shigemasa ◽  
Akira Takahashi ◽  
Ning Wang ◽  
Yusuke Sogabe ◽  
...  

Abstract We wound copper-plated multifilament coated conductors spirally on a round core to decouple filaments electromagnetically under ac transverse magnetic fields and measured their magnetisation losses. Although the coated conductors were plated with copper, which connects all filaments electrically and allows current sharing among them, the spiral geometry decoupled filaments similar to the twist geometry, and the magnetisation loss was reduced effectively by the multifilament structure. The measured magnetisation loss of a 4 mm-wide, 10-filament coated conductor with a 20 μm-thick copper wound spirally on a 3 mm-core was only 7% of that of the same 10-filament coated conductor with a straight shape under an ac transverse magnetic field with an amplitude and frequency of 100 mT and 65.44 Hz, respectively. We separated the measured magnetisation losses into hysteresis and coupling losses and discussed the influence of filament width, copper thickness, and core diameter on both losses. We compared the hysteresis losses with the analytical values given by Brandt and Indenbom and compared the coupling losses with the values calculated using a general expression of coupling loss with the coupling time constants and geometry factors.


2021 ◽  
Author(s):  
Masayoshi Kuwata ◽  
Nobuhiro kuga

<p>A non-contact passive intermodulation distortion (PIM) measurement method for antenna using high-level IM standard (HIMS) is described as proposed herein. A novel method to estimate coupling loss between sensing antenna and a sample antenna is proposed, after which a complete one-port non-contact measurement for antenna is realized. Measurements are conducted in three stages: measuring IM characteristics of HIMS, estimating coupling loss using HIMS, and estimating practical PIM level of a sample antenna. A high-level IM standard consisting of a Schottky barrier diode was used for this study. The method enables ready evaluation of practical PIM of a sample antenna from a complete one-port non-contact measurement with excellent stability and repeatability. Then the validity of the proposed method was confirmed experimentally using a printed dipole antenna. After presenting an applicable measurement method for array antenna incorporating the proposed method, its effectiveness was verified experimentally.</p>


2021 ◽  
Author(s):  
Masayoshi Kuwata ◽  
Nobuhiro kuga

<p>A non-contact passive intermodulation distortion (PIM) measurement method for antenna using high-level IM standard (HIMS) is described as proposed herein. A novel method to estimate coupling loss between sensing antenna and a sample antenna is proposed, after which a complete one-port non-contact measurement for antenna is realized. Measurements are conducted in three stages: measuring IM characteristics of HIMS, estimating coupling loss using HIMS, and estimating practical PIM level of a sample antenna. A high-level IM standard consisting of a Schottky barrier diode was used for this study. The method enables ready evaluation of practical PIM of a sample antenna from a complete one-port non-contact measurement with excellent stability and repeatability. Then the validity of the proposed method was confirmed experimentally using a printed dipole antenna. After presenting an applicable measurement method for array antenna incorporating the proposed method, its effectiveness was verified experimentally.</p>


Author(s):  
Jingyao Dong ◽  
Ying Liu ◽  
Jiajia Yang ◽  
Suikang Li

Sign in / Sign up

Export Citation Format

Share Document