Aut Far-Field Pattem Reconstruction From A Reduced Set Of Spherical Near-Field Data Collected In Presence Of An Infinite Perfectly Conducting Ground Plane

Author(s):  
Francesco D'Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi
Keyword(s):  
2002 ◽  
Vol 50 (3) ◽  
pp. 408-410 ◽  
Author(s):  
F. Las-Heras ◽  
B. Galocha ◽  
J.L. Besada

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Shirook M. Ali ◽  
Huanhuan Gu ◽  
Kelce Wilson ◽  
James Warden

A novel and practical approach is presented providing improved antenna performance without enlarging the antenna or the ground plane. The approach electrically extends the ground plane using wire(s) that behave as surface metal extensions of the ground plane. The wire extensions can be accommodated within typical handset housing or as part of the stylish metal used on the handset’s exterior perimeter; hence don’t require enlargement of the device. Consequently, this approach avoids the costs and limitations traditionally associated with physically lengthening of a ground plane. Eight variations are presented and compared with baseline antenna performance. Both far-field patterns and near-field electromagnetic scans demonstrate that the proposed approach controls the electrical length of the ground plane and hence its chassis wavemodes, without negatively impacting the characteristics of the antenna. Improvements in performance of up to 56% in bandwidth at 900 MHz and up to 12% in efficiency with a reduction of up to 12% in the specific absorption rate (SAR) are achieved. An 8% increase in efficiency with a 1.3% improvement in bandwidth and a 20% reduction in SAR is achieved at 1880 MHz. Thus, improvements in bandwidth are achieved without compromising efficiency. Further, improvements at lower frequencies do not compromise performance at higher frequencies.


Author(s):  
Francesco D'Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi

2016 ◽  
Vol 60 ◽  
pp. 36-42 ◽  
Author(s):  
Gang Bao ◽  
Peijun Li ◽  
Yuliang Wang

Geophysics ◽  
1999 ◽  
Vol 64 (6) ◽  
pp. 1689-1697 ◽  
Author(s):  
Partha S. Routh ◽  
Douglas W. Oldenburg

We present a technique for inverting controlled source audio‐frequency magnetotelluric (CSAMT) data to recover a 1-D conductivity structure. The earth is modeled as a set of horizontal layers with constant conductivity, and the data are apparent resistivities and phases computed from orthogonal electric and magnetic fields due to a finite dipole source. The earth model has many layers compared to the number of data points, and therefore the solution is nonunique. Among the possible solutions, we seek a model with desired character by minimizing a particular model objective function. Traditionally, CSAMT data are inverted either by using the far‐field data where magnetotelluric (MT) equations are valid or by correcting the near‐field data to an equivalent plane‐wave approximation. Here, we invert both apparent resistivity and phase data from the near‐field transition zone and the far‐field regions in the full CSAMT inversion without any correction. Our inversion is compared with that obtained by inverting near‐field corrected data using an MT algorithm. Both synthetic and field data examples indicate that a full CSAMT inversion provides improved information about subsurface conductivity.


Sign in / Sign up

Export Citation Format

Share Document