Estimating Far-Field Emissions From Simulated Near-Field Data With Artificial Neural Networks

2014 ◽  
Vol 50 (2) ◽  
pp. 205-208
Author(s):  
Luciana Firmino ◽  
Adroaldo Raizer ◽  
Yves Marechal
Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 633
Author(s):  
Ehsan Vahidzadeh ◽  
Karthik Shankar

The substitution of time- and labor-intensive empirical research as well as slow finite difference time domain (FDTD) simulations with revolutionary techniques such as artificial neural network (ANN)-based predictive modeling is the next trend in the field of nanophotonics. In this work, we demonstrated that neural networks with proper architectures can rapidly predict the far-field optical response of core–shell plasmonic metastructures. The results obtained with artificial neural networks are comparable with FDTD simulations in accuracy but the speed of obtaining them is between 100–1000 times faster than FDTD simulations. Further, we have proven that ANNs does not have problems associated with FDTD simulations such as dependency of the speed of convergence on the size of the structure. The other trend in photonics is the inverse design problem, where the far-field optical response of a spherical core–shell metastructure can be linked to the design parameters such as type of the material(s), core radius, and shell thickness using a neural network. The findings of this paper provide evidence that machine learning (ML) techniques such as artificial neural networks can potentially replace time-consuming finite domain methods in the future.


Author(s):  
Kobiljon Kh. Zoidov ◽  
◽  
Svetlana V. Ponomareva ◽  
Daniel I. Serebryansky ◽  
◽  
...  

2012 ◽  
Vol 3 (2) ◽  
pp. 48-50
Author(s):  
Ana Isabel Velasco Fernández ◽  
◽  
Ricardo José Rejas Muslera ◽  
Juan Padilla Fernández-Vega ◽  
María Isabel Cepeda González

Sign in / Sign up

Export Citation Format

Share Document