Nonsingular boundary integral equation for two-dimensional electromagnetic scattering problems

2006 ◽  
Vol 48 (4) ◽  
pp. 760-765 ◽  
Author(s):  
D. L. Young ◽  
C. L. Chiu ◽  
C. M. Fan
Geophysics ◽  
1987 ◽  
Vol 52 (6) ◽  
pp. 765-771 ◽  
Author(s):  
B. Kummer ◽  
A. Behle ◽  
F. Dorau

We have constructed a hybrid scheme for elastic‐wave propagation in two‐dimensional laterally inhomogeneous media. The algorithm is based on a combination of finite‐difference techniques and the boundary integral equation method. It involves a dedicated application of each of the two methods to specific domains of the model structure; finite‐difference techniques are applied to calculate a set of boundary values (wave field and stress field) in the vicinity of the heterogeneous domain. The continuation of the near‐field response is then calculated by means of the boundary integral equation method. In a numerical example, the hybrid method has been applied to calculate a plane‐wave response for an elastic lens embedded in a homogeneous environment. The example shows that the hybrid scheme enables more efficient modeling, with the same accuracy, than with pure finite‐difference calculations.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jufeng Wang ◽  
Fengxin Sun ◽  
Ying Xu

The interpolating boundary element-free method (IBEFM) is a direct solution method of the meshless boundary integral equation method, which has high efficiency and accuracy. The IBEFM is developed based on the interpolating moving least-squares (IMLS) method and the boundary integral equation method. Since the shape function of the IMLS method satisfies the interpolation characteristics, the IBEFM can directly and accurately impose the essential boundary conditions, which overcomes the shortcomings of the original boundary element-free method in enforcing the essential boundary approximately. This paper will study the error estimations of the IBEFM for two-dimensional potential problems and the relationship between the errors and the influence radius and the condition number of the coefficient matrix. Two numerical examples are presented to verify the correctness of the theoretical results in this paper.


Sign in / Sign up

Export Citation Format

Share Document