floating body
Recently Published Documents


TOTAL DOCUMENTS

863
(FIVE YEARS 88)

H-INDEX

30
(FIVE YEARS 3)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 469
Author(s):  
Theofanis Karambas ◽  
Eva Loukogeorgaki

In the present work, a Boussinesq-type numerical model is developed for the simulation of nonlinear wave-heaving cylinder interaction. The wave model is able to describe the propagation of fully dispersive and weakly nonlinear waves over any finite water depth. The wave-cylinder interaction is taken into account by solving simultaneously an elliptic equation that determines the pressure exerted by the fluid on the floating body. The heave motion for the partially immersed floating cylinder under the action of waves is obtained by solving numerically the body’s equation of motion in the z direction based on Newton’s law. The developed model is applied for the case of a fixed and a free-floating circular cylinder under the action of regular waves, as well as for a free-floating cylinder undergoing a forced motion in heave. Results (heave and surge exciting forces, heave motions, and wave elevation) are compared with those obtained using a frequency domain numerical model, which is based on the boundary integral equation method.


Author(s):  
Gustavo O. Guarniz Avalos ◽  
Milad Shadman ◽  
Segen F. Estefen

Abstract The latching control represents an attractive alternative to increase the power absorption of wave energy converters (WECs) by tuning the phase of oscillator velocity to the wave excitation phase. However, increasing the amplitude of motion of the floating body is not the only challenge to obtain a good performance of the WEC. It also depends on the efficiency of the power take-off system (PTO). This study aims to address the actual power performance and operation of a heaving point absorber with a direct mechanical drive PTO system controlled by latching. The PTO characteristics, such as the gear ratio, the flywheel inertia, and the electric generator, are analyzed in the WEC performance. Three cylindrical point absorbers are also considered in the present study. A wave-to-wire model is developed to simulate the coupled hydro-electro-mechanical system in regular waves. The wave energy converter (WEC) performance is analyzed using the potential linear theory but considering the viscous damping effect according to the Morison equation to avoid the overestimated responses of the linear theory near resonance when the latching control system is applied. The latching control system increases the mean power. However, the increase is not significant if the parameters that characterize the WEC provide a considerable mean power. The performance of the proposed mechanical power take-off depends on the gear ratio and flywheel. However, the gear ratio shows a more significant influence than the flywheel inertia. The operating range of the generator and the diameter/draft ratio of the buoy also influence the PTO performance.


Author(s):  
Nichita Sava ◽  
Liviu Moise ◽  
Daniela-Ioana Tudose ◽  
Costel Iulian Mocanu ◽  
Eugen Gavan

One of the crucial problems of the 21st century is pollution. Regarding a low carbon footprint, thorough research efforts are being made to minimise fuel gas emissions. Ships, through the powers established for propulsion and the fossil fuels used, are some of the most toxic human inventions. Scientist in many European countries and beyond are developing studies either to reduce emissions from propulsion engines or to design body shapes of ships with low forward resistance and to find electric propulsion solutions. This paper carries out studies of naval hydrodynamics to find body shapes that generate the lowest resistance to advance. Thus, using hydrodynamic observations and with the help of the NUMECA calculation program, two different hulls are studied in order to establish the optimal shape with the lowest forward resistance. Furthermore, acknowledging the limited aquarium of the inland waters, an important aspect to approach is the size of the waves as well as their length. In order not to cause damage to existing shores and facilities, the waves produced by the floating body must have minimum heights and wavelengths.


Author(s):  
FEI MO ◽  
Xiaoran Mei ◽  
Takuya Saraya ◽  
Toshiro HIRAMOTO ◽  
Masaharu Kobayashi

Abstract We have investigated memory characteristics of InGaZnO (IGZO)-channel ferroelectric-FETs (FeFETs) with 2D planar and 3D structure by TCAD simulation to improve the memory window (MW) with a floating-body channel for high-density memory applications. From the study on 2D-planar FeFETs with single-gate (SG) and double-gate (DG), the MW depends on channel length (L) and enhanced with shorter L due to the stronger electrostatic coupling from the source and drain to the center region of the IGZO layer. From the study on 3D-structure FeFETs with macaroni (MAC) and nanowire (NW) structure, the large MW can be obtained especially in NW FeFETs due to the electric-field concentration by Gauss’s law in the 3D electrostatics. Furthermore, we have systematically studied and discussed the device design of MAC and NW structure FeFETs in terms of the diameter and thickness for high-density memory applications. As IGZO thickness decreases and outer diameter of the IGZO layer decreases, the MW increases due to the voltage divider and the electric-field concentration. The device parameters that can maximize the MW can be determined under the constraints of the layout and material based on this study.


2021 ◽  
Vol 11 (23) ◽  
pp. 11115
Author(s):  
Zhongcai Pei ◽  
Hao Jing ◽  
Zhiyong Tang ◽  
Yulan Fu

Power technology has long been the main problem that has plagued the realization of ocean exploration by autonomous underwater vehicles (AUVs). This paper introduces a new wave energy conversion device for AUV, which is sealed inside a closed floating body to avoid interaction with the marine environment. The system uses the gyroscopic effect to continuously convert the pitching motion of waves into electrical energy through flywheel rotation, and thus theoretically extend the endurance time of AUVs. In this paper, a mathematical model of the power generation device is established, and the effects caused by different parameters on the system behavior and energy output are analyzed. In order to reduce the cost of experiments, the energy conversion device is installed on an experimental platform that can simulate wave motion to observe its energy generation performance. The experimental results show that the established mathematical model can accurately reflect the real behavior of the power generation device on the platform under different wave conditions, and the energy output error is only 9.91%.


2021 ◽  
Vol 163 (A3) ◽  
Author(s):  
X Song ◽  
W Liu ◽  
T Xia

In this paper, a numerical hydrodynamic performance assessment of a full scale cylindrical floating body with different damping devices is presented. The motion characteristics of the full scale cylindrical floating body are investigated in regular and irregular wave conditions with different wave heights and periods. A numerical wave tank based on the two-phase Volume of Fluid (VOF) model was established. Approaches to the computational domain and overset-grids were investigated and were found to be suitable. Grid convergence was undertaken for the simulations. The numerical wave tank was performed to analyse the motion characteristics of the cylindrical floating body with arbitrary devices under different wave conditions by using the VOF method with an overset-grid technique. The motion characteristics of the cylindrical floating body with different damping devices were numerically investigated to provide more information on the effect of damping devices on the hydrodynamic performance. The conclusions of this paper give guidance in the motion characteristics and the damping device prototype design to be adopted under the specified wave conditions. 


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5979
Author(s):  
Alexandros Magkouris ◽  
Kostas Belibassakis ◽  
Eugen Rusu

In this paper, a novel model based on the boundary element method (BEM) is presented for the hydrodynamic analysis of floating twin-hull structures carrying photovoltaic panels, supporting the study of wave responses and their effects on power performance in variable bathymetry regions. The analysis is restricted to two spatial dimensions for simplicity. The method is free of any mild-slope assumptions. A boundary integral representation is applied for the near field in the vicinity of the floating body, which involved simple (Rankine) sources, while the far field is modeled using complete (normal-mode) series expansions that are derived using separation of variables in the constant depth half-strips on either side of the middle, non-uniform domain, where the depth exhibited a general variation, overcoming a mild bottom-slope assumption. The numerical solution is obtained by means of a low-order panel method. Numerical results are presented concerning twin-hull floating bodies of simple geometry lying over uniform and sloping seabeds. With the aid of systematic comparisons, the effects of the bottom slope and curvature on the hydrodynamic characteristics (hydrodynamic coefficients and responses) of the floating bodies are illustrated and discussed. Finally, the effects of waves on the floating PV performance are presented, indicating significant variations of the performance index ranging from 0 to 15% depending on the sea state.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2257
Author(s):  
Yun Pan ◽  
Huanhuan Tong ◽  
Yang Zhou ◽  
Can Liu ◽  
Dawen Xue

An artificial floating reef is an important part of the coastal ecological corridor. The large-scale construction of floating reefs by optimizing mooring methods can effectively improve the ecological effects of coastal projects. The artificial floating reef belongs to coastal engineering, and wave resistance is fundamental to its structural design. In this paper, the method for processing coupling forces and motion, the method for judging the floating reef out of water surface, and the method for correcting velocity and acceleration of water mass points are elaborated in detail by using the finite element method and lumped-mass mooring model. By comparing and analyzing the results of physical experiment and numerical simulation, the correctness of the numerical model is verified. Finally, the diachronic variation of pitching angle of floating reef, the tension of the mooring rope, and the total tension of the fixed points of the fishing net were analyzed by the dynamic response numerical mode with a new type of mooring. The purpose of the current study was to provide a basis for the optimization of structure shape, the matching of floating body, and the counterweight of artificial floating reef.


Sign in / Sign up

Export Citation Format

Share Document