Numerical solutions of Boussinesq equation using Galerkin finite element method

Author(s):  
Yusuf Ucar ◽  
Alaattin Esen ◽  
Berat Karaagac
2013 ◽  
Vol 18 (2) ◽  
pp. 260-273 ◽  
Author(s):  
Alaattin Esen ◽  
Yusuf Ucar ◽  
Nuri Yagmurlu ◽  
Orkun Tasbozan

In the present study, numerical solutions of the fractional diffusion and fractional diffusion-wave equations where fractional derivatives are considered in the Caputo sense have been obtained by a Galerkin finite element method using quadratic B-spline base functions. For the fractional diffusion equation, the L1 discretizaton formula is applied, whereas the L2 discretizaton formula is applied for the fractional diffusion-wave equation. The error norms L 2 and L ∞ are computed to test the accuracy of the proposed method. It is shown that the present scheme is unconditionally stable by applying a stability analysis to the approximation obtained by the proposed scheme.


2016 ◽  
Vol 8 (1) ◽  
pp. 29-39
Author(s):  
K. M. Helal

AbstractThe main purpose of this paper is to approximate the solution of the steady tensorial transport equations using discontinuous Galerkin finite element method implemented with the finite element solver FreeFem++. After introducing the formulations of the tensorial transport equations, the analysis of its componentwise equations, i.e., advection-reaction equations have been discussed. Discretizing the transport problem using discontinuous Galerkin finite element method, the iterative fixed-point method is used to obtain the solutions. We present the numerical simulations of two-dimensional benchmark problem and observe the instability of elasticity. All the simulations are done using the script developed in FreeFem++.


Sign in / Sign up

Export Citation Format

Share Document