Optimal control of earth pressure balance of shield tunneling machine based on dual‐heuristic dynamic programming

2020 ◽  
Vol 41 (5) ◽  
pp. 1510-1523
Author(s):  
Xuanyu Liu ◽  
Sheng Xu ◽  
Cheng Shao
2014 ◽  
Vol 1065-1069 ◽  
pp. 373-377
Author(s):  
Jing Cao ◽  
Hai Xing Yang ◽  
Bo Liang ◽  
Hai Ming Liu

Chamber earth pressure is one of the significant parameters during the Earth Pressure Balance (EPB) shield construction processing. The soil arching effect is existence when the tunnel depth is enough. It is significant to consider the influence of arching effect to analyze the pressure in soil chamber in shield tunneling. In this paper, the influence of arching effect is considered to calculate the chamber earth pressure. Firstly, the soil is supposed as loose media, and the necessary buried depth of producing arching affects is deduced according to the loose media theory. Then, based on the characteristic of proper arching axis, the equation and the height of proper arch are obtained. At last, the calculation formula of minimum chamber earth pressure of EPB shield tunnel is deduced which can consider the effect of arching effect.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Haibo Xie ◽  
Zhibin Liu ◽  
Huayong Yang

Shield tunneling machine is widely applied for underground tunnel construction. The shield machine is a complex machine with large momentum and ultralow advancing speed. The working condition underground is rather complicated and unpredictable, and brings big trouble in controlling the advancing speed. This paper focused on the advancing motion control on desired tunnel axis. A three-state dynamic model was established with considering unknown front face earth pressure force and unknown friction force. LuGre friction model was introduced to describe the friction force. Backstepping design was then proposed to make tracking error converge to zero. To have a comparison study, controller without LuGre model was designed. Tracking simulations of speed regulations and simulations when front face earth pressure changed were carried out to show the transient performances of the proposed controller. The results indicated that the controller had good tracking performance even under changing geological conditions. Experiments of speed regulations were carried out to have validations of the controllers.


Sign in / Sign up

Export Citation Format

Share Document