Low‐Frequency Charge Carrier Dynamics in Ferroelectric κ ‐(BEDT‐TTF) 2 X – A Comparative Study of X = Cu[N(CN) 2 ]Cl and X = Hg(SCN) 2 Cl

2019 ◽  
Vol 256 (9) ◽  
pp. 1800746 ◽  
Author(s):  
Tatjana Thomas ◽  
Benedikt Hartmann ◽  
Peter Lunkenheimer ◽  
Harald Schubert ◽  
John A. Schlueter ◽  
...  
2021 ◽  
Author(s):  
Rajiv Ramanujam Prabhakar ◽  
Thomas Moehl ◽  
Dennis Friedrich ◽  
Marinus Kunst ◽  
Sudhanshu Shukla ◽  
...  

<p>Sb<sub>2</sub>Se<sub>3 </sub>has emerged as an important photoelectrochemical (PEC) and photovoltaic (PV) material due to its rapid rise in photoconversion efficiencies. However, despite its binary nature, Sb<sub>2</sub>Se<sub>3 </sub>has a complex defect chemistry, which reduces the maximum photovoltage that can be obtained. Thus, it is important to understand these defects and to develop passivation strategies in order to further improve this material. In this work, a comprehensive investigation of the charge carrier dynamics of Sb<sub>2</sub>Se<sub>3</sub> and the influence of sulfur treatment on its optoelectronic properties was performed using time resolved microwave conductivity (TRMC), photoluminescence (PL) spectroscopy and low frequency Raman spectroscopy (LFRS). The key finding in this work is that upon sulfur treatment of Sb<sub>2</sub>Se<sub>3</sub>, the carrier lifetime is increased by the passivation of deep defects in Sb<sub>2</sub>Se<sub>3</sub> in both the surface region and the bulk, which is evidenced by increased charge carrier lifetime of TRMC decay dynamics, increased radiative recombination efficiency and decreased deep defect level emission (PL), and improved long-range order in the material (LFRS). These findings provide crucial insights into the defect passivation mechanisms in Sb<sub>2</sub>Se<sub>3</sub> paving the way for developing highly efficient PEC and PV devices.</p>


2021 ◽  
Author(s):  
Rajiv Ramanujam Prabhakar ◽  
Thomas Moehl ◽  
Dennis Friedrich ◽  
Marinus Kunst ◽  
Sudhanshu Shukla ◽  
...  

<p>Sb<sub>2</sub>Se<sub>3 </sub>has emerged as an important photoelectrochemical (PEC) and photovoltaic (PV) material due to its rapid rise in photoconversion efficiencies. However, despite its binary nature, Sb<sub>2</sub>Se<sub>3 </sub>has a complex defect chemistry, which reduces the maximum photovoltage that can be obtained. Thus, it is important to understand these defects and to develop passivation strategies in order to further improve this material. In this work, a comprehensive investigation of the charge carrier dynamics of Sb<sub>2</sub>Se<sub>3</sub> and the influence of sulfur treatment on its optoelectronic properties was performed using time resolved microwave conductivity (TRMC), photoluminescence (PL) spectroscopy and low frequency Raman spectroscopy (LFRS). The key finding in this work is that upon sulfur treatment of Sb<sub>2</sub>Se<sub>3</sub>, the carrier lifetime is increased by the passivation of deep defects in Sb<sub>2</sub>Se<sub>3</sub> in both the surface region and the bulk, which is evidenced by increased charge carrier lifetime of TRMC decay dynamics, increased radiative recombination efficiency and decreased deep defect level emission (PL), and improved long-range order in the material (LFRS). These findings provide crucial insights into the defect passivation mechanisms in Sb<sub>2</sub>Se<sub>3</sub> paving the way for developing highly efficient PEC and PV devices.</p>


Author(s):  
Sacha Corby ◽  
Laia Francas ◽  
Shababa Selim ◽  
Michael Sachs ◽  
Andreas Kafizas ◽  
...  

2020 ◽  
Vol 8 (42) ◽  
pp. 14834-14844
Author(s):  
Piotr Piatkowski ◽  
Sofia Masi ◽  
Pavel Galar ◽  
Mario Gutiérrez ◽  
Thi Tuyen Ngo ◽  
...  

Charge-carrier transfer (CT) from the perovskite host to PbS QDs were studied using fs-transient absorption and THz techniques. The CT rate constants increase with the size of QDs due to a change in the position of valence and conduction bands in PbS QDs.


Sign in / Sign up

Export Citation Format

Share Document