recombination efficiency
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 39)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Robert L. Lalonde ◽  
Cassie L. Kemmler ◽  
Frederike W. Riemslagh ◽  
Andrew J. Aman ◽  
Jelena Kresoja-Rakic ◽  
...  

The most-common strategy for zebrafish Cre/lox-mediated lineage labeling experiments combines ubiquitously expressed, lox-based Switch reporter transgenes with tissue-specific Cre or 4-OH-Tamoxifen-inducible CreERT2 driver lines. Although numerous Cre driver lines have been produced, only a few broadly expressed Switch reporters exist in zebrafish and their generation by random transgene integration has been challenging due to position-effect sensitivity of the lox-flanked recombination cassettes. Here, we compare commonly used Switch reporter lines for their recombination efficiency and reporter expression pattern during zebrafish development. Using different experimental setups, we show that ubi:Switch and hsp70l:Switch outperform current generations of two additional Switch reporters due to favorable transgene integration sites. Our comparisons also document preferential Cre-dependent recombination of ubi:Switch and hsp70l:Switch in distinct zebrafish tissues at early developmental stages. To investigate what genomic features may influence Cre accessibility and lox recombination efficiency in highly functional Switch lines, we mapped these transgenes and charted chromatin dynamics at their integration sites. Our data documents the heterogeneity among lox-based Switch transgenes towards informing suitable transgene selection for lineage labeling experiments. Our work further proposes that ubi:Switch and hsp70l:Switch define genomic integration sites suitable for universal transgene or switch reporter knock-in in zebrafish.


Author(s):  
Jin Luo ◽  
Emily A. McIntyre ◽  
Stacy R. Bedore ◽  
Ville Santala ◽  
Ellen L. Neidle ◽  
...  

Adaptive laboratory evolution (ALE) is a powerful approach for improving phenotypes of microbial hosts. Evolved strains typically contain numerous mutations that can be revealed by whole-genome sequencing. However, determining the contribution of specific mutations to new phenotypes is typically challenging and laborious. This task is complicated by factors such as the mutation type, the genomic context, and the interplay between different mutations. Here, a novel approach was developed to identify the significance of mutations in strains evolved from Acinetobacter baylyi ADP1. This method, termed Rapid Advantageous Mutation ScrEening and Selection (RAMSES), was used to analyze mutants that emerged from stepwise adaptation to, and consumption of, high levels of ferulate, a common lignin-derived aromatic compound. After whole-genome sequence analysis, RAMSES allowed rapid determination of effective mutations and seamless introduction of the beneficial mutations into the chromosomes of new strains with different genetic backgrounds. This simple approach to reverse-engineering exploits the natural competence and high recombination efficiency of ADP1. Mutated DNA, added directly to growing cells, replaces homologous chromosomal regions to generate transformants that will become enriched if there is selective benefit. Thus, advantageous mutations can be rapidly identified. Here, the growth advantage of transformants under selective pressure revealed key mutations in genes related to aromatic transport, including hcaE , hcaK , and vanK , and a gene, ACIAD0482 , which is associated with lipopolysaccharide synthesis. This study provides insights into enhanced utilization of industrially relevant aromatic substrates and demonstrates the use of A. baylyi ADP1 as a convenient platform for strain development and evolution studies. Importance Microbial conversion of lignin-enriched streams is a promising approach for lignin valorization. However, the lignin-derived aromatic compounds are toxic to cells at relevant concentrations. Although adaptive laboratory evolution (ALE) is a powerful approach to develop more tolerant strains, it is typically laborious to identify the mechanisms underlying phenotypic improvement. We employed Acinetobacter baylyi ADP1, an aromatic compound degrading strain that may be useful for biotechnology. The natural competence and high recombination efficiency of this strain can be exploited for critical applications such as the breakdown of lignin and plastics, abundant polymers composed of aromatic subunits. The natural transformability of this bacterium enabled us to develop a novel approach for rapid screening of advantageous mutations from ALE-derived aromatic-tolerant ADP1-derived strains. We clarified the mechanisms and genetic targets for improved tolerance towards common lignin-derived aromatic compounds. This study facilitates metabolic engineering for lignin valorization.


2021 ◽  
Author(s):  
Jin Luo ◽  
Emily A. McIntyre ◽  
Stacy R. Bedore ◽  
Ville Santala ◽  
Ellen L. Neidle ◽  
...  

AbstractAdaptive laboratory evolution (ALE) is a powerful approach for improving phenotypes of microbial hosts. Evolved strains typically contain numerous mutations that can be revealed by whole-genome sequencing. However, determining the contribution of specific mutations to new phenotypes is typically challenging and laborious. This task is complicated by factors such as the mutation type, the genomic context, and the interplay between different mutations. Here, a novel approach was developed to identify the significance of mutations in strains derived from Acinetobacter baylyi ADP1. This method, termed Rapid Advantageous Mutation ScrEening and Selection (RAMSES), was used to analyze mutants that emerged from stepwise adaptation to, and consumption of, high levels of ferulate, a common lignin-derived aromatic compound. After whole-genome sequence analysis, RAMSES allowed both rapid determination of effective mutations and seamless introduction of the beneficial mutations into the chromosomes of new strains with different genetic backgrounds. This simple approach to reverse-engineering exploits the natural competence and high recombination efficiency of ADP1. The growth advantage of transformants under selective pressure revealed key mutations in genes related to aromatic transport, including hcaE, hcaK, and vanK, and a gene, ACIAD0482, which is associated with lipopolysaccharide synthesis. This study provides insights into enhanced utilization of industrially relevant aromatic substrates and demonstrates the use of A. baylyi ADP1 as a convenient platform for strain development and evolution studies.ImportanceMicrobial conversion of lignin-enriched streams is a promising approach for lignin valorization. However, the lignin-derived aromatic compounds are toxic to cells at relevant concentrations. Adaptive laboratory evolution is a powerful approach to develop more tolerant strains, but revealing the underlying mechanisms behind phenotypic improvement typically involves laborious processes. We employed Acinetobacter baylyi ADP1, an aromatic compound degrading strain that may be useful for biotechnology. The natural competence and high recombination efficiency of strain ADP1 can be exploited for critical applications such as the breakdown of lignin and plastics, abundant polymers composed of aromatic subunits. The natural transformability of this bacterium enabled us to develop a novel approach that allows rapid screening of advantageous mutations from ALE-derived aromatic-tolerant ADP1 strains. We clarified the mechanisms and genetic targets for improved tolerance towards common lignin-derived aromatic compounds. This study facilitates metabolic engineering for lignin valorization.


2021 ◽  
Vol 15 ◽  
Author(s):  
Felix Beyer ◽  
Wichard Lüdje ◽  
Julian Karpf ◽  
Gesine Saher ◽  
Ruth Beckervordersandforth

In the adult central nervous system, neural stem cells (NSCs) reside in two discrete niches: the subependymal zone (SEZ) of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus (DG). Here, NSCs represent a population of highly specialized astrocytes that are able to proliferate and give rise to neuronal and glial progeny. This process, termed adult neurogenesis, is extrinsically regulated by other niche cells such as non-stem cell astrocytes. Studying these non-stem cell niche astrocytes and their role during adult neuro- and gliogenesis has been hampered by the lack of genetic tools to discriminate between transcriptionally similar NSCs and niche astrocytes. Recently, Aldh1L1 has been shown to be a pan-astrocyte marker and that its promoter can be used to specifically target astrocytes using the Cre-loxP system. In this study we explored whether the recently described Aldh1L1-CreERT2 mouse line (Winchenbach et al., 2016) can serve to specifically target niche astrocytes without inducing recombination in NSCs in adult neurogenic niches. Using short- and long-term tamoxifen protocols we revealed high recombination efficiency and specificity in non-stem cell astrocytes and little to no recombination in NSCs of the adult DG. However, in the SEZ we observed recombination in ependymal cells, astrocytes, and NSCs, the latter giving rise to neuronal progeny of the rostral migratory stream and olfactory bulb. Thus, we recommend the here described Aldh1L1-CreERT2 mouse line for predominantly studying the functions of non-stem cell astrocytes in the DG under physiological and pathological conditions.


2021 ◽  
Vol 218 (10) ◽  
Author(s):  
Helen A. Beilinson ◽  
Rebecca A. Glynn ◽  
Anurupa Devi Yadavalli ◽  
Jianxiong Xiao ◽  
Elizabeth Corbett ◽  
...  

Immunoglobulin and T cell receptor gene assembly depends on V(D)J recombination initiated by the RAG1-RAG2 recombinase. The RAG1 N-terminal region (NTR; aa 1–383) has been implicated in regulatory functions whose influence on V(D)J recombination and lymphocyte development in vivo is poorly understood. We generated mice in which RAG1 lacks ubiquitin ligase activity (P326G), the major site of autoubiquitination (K233R), or its first 215 residues (Δ215). While few abnormalities were detected in R1.K233R mice, R1.P326G mice exhibit multiple features indicative of reduced recombination efficiency, including an increased Igκ+:Igλ+ B cell ratio and decreased recombination of Igh, Igκ, Igλ, and Tcrb loci. Previous studies indicate that synapsis of recombining partners during Igh recombination occurs through two pathways: long-range scanning and short-range collision. We find that R1Δ215 mice exhibit reduced short-range Igh and Tcrb D-to-J recombination. Our findings indicate that the RAG1 NTR regulates V(D)J recombination and lymphocyte development by multiple pathways, including control of the balance between short- and long-range recombination.


2021 ◽  
Author(s):  
Manning Y. Huang ◽  
Meenakshi B. Joshi ◽  
Michael J Boucher ◽  
Sujin Lee ◽  
Liza C. Loza ◽  
...  

Cryptococcus neoformans, the most common cause of fungal meningitis, is a basidiomycete haploid budding yeast with a complete sexual cycle. Genome modification by homologous recombination is feasible using biolistic transformation and long homology arms, but the method is arduous and unreliable. Recently, multiple groups have reported the use of CRISPR-Cas9 as an alternative to biolistics, but long homology arms are still necessary, limiting the utility of this method. Since the S. pyogenes Cas9 derivatives used in prior studies were not optimized for expression in C. neoformans, we designed, synthesized, and tested a fully C. neoformans-optimized Cas9. We found that a Cas9 harboring only common C. neoformans codons and a consensus C. neoformans intron together with a TEF1 promoter and terminator and a nuclear localization signal (C. neoformans-optimized CAS9 or 'CnoCAS9') reliably enabled genome editing in the widely-used KN99α C. neoformans strain. Furthermore, editing was accomplished using donors harboring short (50 bp) homology arms attached to marker DNAs produced with synthetic oligonucleotides and PCR amplification. We also demonstrated that prior stable integration of CnoCAS9 further enhances both transformation and homologous recombination efficiency; importantly, this manipulation does not impact virulence in animals. We also implemented a universal tagging module harboring a codon-optimized fluorescent protein (mNeonGreen) and a tandem Calmodulin Binding Peptide-2X FLAG Tag that allows for both localization and purification studies of proteins for which the corresponding genes are modified by short homology-directed recombination. These tools enable short-homology genome engineering in C. neoformans.


2021 ◽  
Author(s):  
Meritxell Rovira ◽  
Jorge Ferrer ◽  
Miguel Angel Maestro ◽  
Vanessa Grau

The Hnf1b-CreERT2 BAC transgenic (Tg(Hnf1b-cre/ERT2)1Jfer) has been used extensively to trace the progeny of pancreatic ducts in development, regeneration, or cancer. This model originally showed that duct-like plexus cells of the embryonic pancreas are bipotent duct-endocrine progenitors, whereas adult mouse duct cells are not a common source of δ cells in various regenerative settings. We have now examined Hnf1b-CreERT2 mice with a Rosa26-RFP reporter transgene. This showed inducible recombination of up to 96% adult duct cells, a much higher efficiency than the previously used β-galactosidase reporter. Despite this high duct-cell excision, recombination in α and β cells remained very low, similar to the previously used reporter transgene (Rosa26-βgalactosidase). However, nearly half of somatostatin-expressing δ cells showed reporter activation, which was due to Cre expression in δ cells rather than an indication of duct to δ cell conversions. The high recombination efficiency in duct cells indicates that the Hnf1b-CreERT2 model can be useful for both ductal fate mapping and genetic inactivation studies. The recombination in δ cells does not modify the interpretation of studies that failed to show duct conversions to other cell types, but needs to be considered in studies that use this model to modify the plasticity of pancreatic duct cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jue Hou ◽  
Charles P. Lin ◽  
Giuseppe Intini

AbstractConditional creER-mediated gene inactivation or gene induction has emerged as a robust tool for studying gene functions in mouse models of tissue development, homeostasis, and regeneration. Here, we present a method to conditionally induce cre recombination in the mouse calvarial bone while avoiding systemic recombination in distal bones. To test our method, we utilized Prx1creER-egfp;td-Tomato mice and delivered 4-hydroxytamoxifen (4-OHT) to the mouse calvaria, subperiosteally. First, we showed that two calvaria subperiosteal injections of 10 µg of 4-OHT (3.3 mg of 4-OHT/kg of body weight) can induce local recombination as efficiently as two intraperitoneal systemic injections of 200 μg of tamoxifen (70 mg of tamoxifen/kg of body weight). Then, we studied the recombination efficiency of various subperiosteal calvaria dosages and found that two subperiosteal injections of 5 µg 4-OHT (1.65 mg of 4-OHT/kg of body weight) uphold the same recombination efficiency observed with higher dosages. Importantly, the result indicated that the low dosage does not induce significant systemic recombination in remote skeletal tissues. With the proposed local low dosage protocol, the recombination efficiency at the injection site (calvarial bone) reached 94%, while the recombination efficiency at the mandible and the digits was as low as the efficiency measured in control animals.


2021 ◽  
Author(s):  
Linlin Liang ◽  
Yunkai Lv ◽  
Zhengming Yu ◽  
Ruifang Wu ◽  
Qi Shi ◽  
...  

Abstract Using AgNO3 as the Ag source, the Ag@BiOCl photocatalyst was prepared by depositing noble metal Ag on the surface of BiOCl by solvothermal method. Ag exists as spherical particles with a diameter of 40 nm. Based on the surface plasmon resonance effect (SPR) of Ag, the photoresponse range of BiOCl was successfully extended to the visible light region, which reduced the photo-generated electron-hole recombination efficiency and improved the charge transfer efficiency. The photocatalytic performance of Ag@BiOCl was studied under visible light. The results show that when the Ag content is 10wt%, it exhibits excellent effects on the degradation of acid red B (ARB), and its degradation rate constant is 11 times larger than that of BiOCl. The active substance-capturing test results show that the main role in photocatalytic degradation of ARB is voids.


Sign in / Sign up

Export Citation Format

Share Document