Reliability analysis using exponentiated Weibull distribution and inverse power law

2019 ◽  
Vol 35 (4) ◽  
pp. 1219-1230 ◽  
Author(s):  
Luis Carlos Méndez‐González ◽  
Luis Alberto Rodríguez‐Picón ◽  
Delia Julieta Valles‐Rosales ◽  
Alejandro Alvarado Iniesta ◽  
Abel Eduardo Quezada Carreón
2006 ◽  
Author(s):  
Gerardo Ramirez ◽  
Sonia Perez ◽  
John G. Holden

Optica ◽  
2015 ◽  
Vol 2 (10) ◽  
pp. 877 ◽  
Author(s):  
Amy L. Oldenburg ◽  
Xiao Yu ◽  
Thomas Gilliss ◽  
Oluwafemi Alabi ◽  
Russell M. Taylor ◽  
...  

2013 ◽  
Vol 20 (01) ◽  
pp. 1350002 ◽  
Author(s):  
F. Giraldi ◽  
F. Petruccione

The exact dynamics of a quantum damped harmonic oscillator coupled to a reservoir of boson modes has been formally described in terms of the coupling function, both in weak and strong coupling regime. In this scenario, we provide a further description of the exact dynamics through integral transforms. We focus on a special class of spectral densities, sub-ohmic at low frequencies, and including integrable divergencies referred to as photonic band gaps. The Drude form of the spectral densities is recovered as upper limit. Starting from special distributions of coherent states as external reservoir, the exact time evolution, described through Fox H-functions, shows long time inverse power law decays, departing from the exponential-like relaxations obtained for the Drude model. Different from the weak coupling regime, in the sub-ohmic condition, undamped oscillations plus inverse power law relaxations appear in the long time evolution of the observables position and momentum. Under the same condition, the number of excitations shows trapping of the population of the excited levels and oscillations enveloped in inverse power law relaxations. Similarly to the weak coupling regime, critical configurations give arbitrarily slow relaxations useful for the control of the dynamics. If compared to the value obtained in weak coupling condition, for strong couplings the critical frequency is enhanced by a factor 4.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Srinivasa Rao Gadde ◽  
Arnold K. Fulment ◽  
Josephat K. Peter

The proposed sampling plan in this article is referred to as multiple dependent state (MDS) sampling plans, for rejecting a lot based on properties of the current and preceding lot sampled. The median life of the product for the proposed sampling plan is assured based on a time-truncated life test, when a lifetime of the product follows exponentiated Weibull distribution (EWD). For the proposed plan, optimal parameters such as the number of preceding lots required for deciding whether to accept or reject the current lot, sample size, and rejection and acceptance numbers are obtained by the approach of two points on the operating characteristic curve (OC curve). Tables are constructed for various combinations of consumer and producer’s risks for various shape parameters. The proposed MDS sampling plan for EWD is demonstrated using the coronavirus (COVID-19) outbreak in China. The performance of the proposed sampling plan is compared with the existing single-sampling plan (SSP) when the quality of the product follows EWD.


Sign in / Sign up

Export Citation Format

Share Document