cell interactions
Recently Published Documents


TOTAL DOCUMENTS

3462
(FIVE YEARS 427)

H-INDEX

137
(FIVE YEARS 13)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Marta Interlandi ◽  
Kornelius Kerl ◽  
Martin Dugas

AbstractDeciphering cell−cell communication is a key step in understanding the physiology and pathology of multicellular systems. Recent advances in single-cell transcriptomics have contributed to unraveling the cellular composition of tissues and enabled the development of computational algorithms to predict cellular communication mediated by ligand−receptor interactions. Despite the existence of various tools capable of inferring cell−cell interactions from single-cell RNA sequencing data, the analysis and interpretation of the biological signals often require deep computational expertize. Here we present InterCellar, an interactive platform empowering lab-scientists to analyze and explore predicted cell−cell communication without requiring programming skills. InterCellar guides the biological interpretation through customized analysis steps, multiple visualization options, and the possibility to link biological pathways to ligand−receptor interactions. Alongside convenient data exploration features, InterCellar implements data-driven analyses including the possibility to compare cell−cell communication from multiple conditions. By analyzing COVID-19 and melanoma cell−cell interactions, we show that InterCellar resolves data-driven patterns of communication and highlights molecular signals through the integration of biological functions and pathways. We believe our user-friendly, interactive platform will help streamline the analysis of cell−cell communication and facilitate hypothesis generation in diverse biological systems.


Urolithiasis ◽  
2022 ◽  
Author(s):  
Qunsheng Yan ◽  
Yang Chen ◽  
Haoran Liu ◽  
Guoxiang Li ◽  
Chaozhao Liang ◽  
...  

AbstractDuring the development of urinary stone disease, the formation of tiny crystals that adhere to the renal tubular epithelium induces epithelial cell damage. This damage and repair of the epithelium is associated with the establishment of more crystal adhesion sites, which in turn stimulates further crystal adhesion and, eventually, stone formation. Deposited crystals typically cause changes in epithelial cell gene expression, such as transcriptome changes and alternative splicing events. Although considered important for regulating gene expression, alternative splicing has not been reported in studies related to kidney stones. To date, whether alternative splicing events are involved in the regulation of stone formation and whether crystallographic cell interactions are regulated by alternative splicing at the transcriptional level have remained unknown. Therefore, we conducted RNA sequencing and alternative splicing-related bioassays by modeling the in vitro stone environment. Many alternative splicing events were associated with crystallographic cell interactions. Moreover, these events regulated transcription and significantly affected the capacity of crystals to adhere to renal tubular epithelial cells and regulate apoptosis.


2022 ◽  
Vol 2 ◽  
Author(s):  
Anunya Opasawatchai ◽  
Sarintip Nguantad ◽  
Benjamaporn Sriwilai ◽  
Ponpan Matangkasombut ◽  
Oranart Matangkasombut ◽  
...  

A comprehensive understanding of dental pulp cellular compositions and their molecular responses to infection are crucial for the advancement of regenerative dentistry. Here, we presented a pilot study of single-cell transcriptomic profiles of 6,810 pulpal cells isolated from a sound human maxillary third molar and three carious teeth with enamel and deep dental caries. We observed altered immune cell compositions of the dental pulp in deep, but not enamel ones. Differential expression analysis revealed up-regulation of several pro-inflammatory, anti-inflammatory, and mineralization-related genes in the immune and stromal cells of the deep dental caries. Making use of an algorithm for predicting cell-to-cell interactions from single-cell transcriptomic profiles, we showed an increase in cell-cell interactions between B cells, plasma cells and macrophages, and other cell types in deep dental caries, including those between TIMP1 (odontoblasts)—CD63 (myeloid cells), and CCL2 (macrophages)—ACKR1 (endothelial cells). Collectively, our work highlighted the single-cell level gene regulations and intercellular interactions in the dental pulps in health and disease.


2022 ◽  
pp. 100153
Author(s):  
Gaël Moquin-Beaudry ◽  
Basma Benabdallah ◽  
Damien Maggiorani ◽  
Oanh Le ◽  
Yuanyi Li ◽  
...  

Author(s):  
Nora P. Goette ◽  
Francisco R. Borzone ◽  
Ailen D. Discianni Lupi ◽  
Norma A. Chasseing ◽  
María F. Rubio ◽  
...  

2021 ◽  
Author(s):  
Debangana Mukhopadhyay ◽  
Rumi De

Cellular aggregation is a complex process orchestrated by various kinds of interactions depending on its environments. Different interactions give rise to different pathways of cellular rearrangement and the development of specialized tissues. To distinguish the underlying mechanisms, in this theoretical work, we investigate the spontaneous emergence of tissue patterns from an ensemble of single cells on a substrate following three leading pathways of cell-cell interactions, namely, direct cell adhesion contacts, matrix mediated mechanical interaction, and chemical signalling. Our analysis shows that the growth kinetics of the aggregation process is distinctly different for each pathway and bears the signature of the specific cell-cell interactions. Interestingly, we find that the average domain size and the mass of the clusters exhibit a power law growth in time under certain interaction mechanisms hitherto unexplored. Further, as observed in experiments, the cluster size distribution can be characterized by stretched exponential functions showing distinct cellular organization processes.


2021 ◽  
Vol 8 (12) ◽  
pp. 224
Author(s):  
Diego Omar Sanchez Ramirez ◽  
Iriczalli Cruz-Maya ◽  
Claudia Vineis ◽  
Vincenzo Guarino ◽  
Cinzia Tonetti ◽  
...  

Protein-based nanofibres are commonly used in the biomedical field to support cell growth. For this study, the cell viability of wool keratin-based nanofibres was tested. Membranes were obtained by electrospinning using formic acid, hexafluoroisopropanol, and water as solvents. For aqueous solutions, polyethylene oxide blended with keratin was employed, and their use to support in vitro cell interactions was also validated. Morphological characterization and secondary structure quantification were carried out by SEM and FTIR analyses. Although formic acid produced the best nanofibres from a morphological point of view, the results showed a better response to cell proliferation after 14 days in the case of fibres from hexafluoroisopropanol solution. Polyethylene oxide in keratin nanofibres was demonstrated, over time, to influence in vitro cell interactions, modifying membranes-wettability and reducing the contact between keratin chains and water molecules, respectively.


Author(s):  
Jacob I. Reynolds ◽  
Ross A. Vitek ◽  
Peter G. Geiger ◽  
Brian P. Johnson
Keyword(s):  

2021 ◽  
Author(s):  
Bianca Flores ◽  
Smriti Chawla ◽  
Ning Ma ◽  
Chad Sanada ◽  
Praveen Kujur ◽  
...  

Abstract Cell-cell communication and physical interactions play a vital role in cancer initiation, homeostasis, progression, and immune response. Here, we report a system that combines live capture of different cell types, co-incubation, time-lapse imaging, and gene expression profiling of doublets using a microfluidic integrated fluidic circuit (IFC) that enables measurement of physical distances between cells and the associated transcriptional profiles due to cell-cell interactions. The temporal variations in natural killer (NK) - triple-negative breast cancer (TNBC) cell distances were tracked and compared with terminally profiled cellular transcriptomes. The results showed the time-bound activities of regulatory modules and alluded to the existence of transcriptional memory. Our experimental and bioinformatic approaches serve as a proof of concept for interrogating live cell interactions at doublet resolution, which can be applied across different cancers and cell types.


Author(s):  
Zhenzhen Guo ◽  
Lili Zhang ◽  
Qiuxia Yang ◽  
Ruizi Peng ◽  
Xi Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document