Stochastic robust finite‐time boundedness for semi‐Markov jump uncertain neutral‐type neural networks with mixed time‐varying delays via a generalized reciprocally convex combination inequality

2019 ◽  
Vol 30 (5) ◽  
pp. 2001-2019 ◽  
Author(s):  
Haiyang Zhang ◽  
Zhipeng Qiu ◽  
Xinzhi Liu ◽  
Lianglin Xiong
Computation ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 70
Author(s):  
Nayika Samorn ◽  
Narongsak Yotha ◽  
Pantiwa Srisilp ◽  
Kanit Mukdasai

The issue of the robust exponential passivity analysis for uncertain neutral-type neural networks with mixed interval time-varying delays is discussed in this work. For our purpose, the lower bounds of the delays are allowed to be either positive or zero adopting the combination of the model transformation, various inequalities, the reciprocally convex combination, and suitable Lyapunov–Krasovskii functional. A new robust exponential passivity criterion is received and formulated in the form of linear matrix inequalities (LMIs). Moreover, a new exponential passivity criterion is also examined for systems without uncertainty. Four numerical examples indicate our potential results exceed the previous results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Xiaoman Liu ◽  
Haiyang Zhang ◽  
Jun Yang ◽  
Hao Chen

AbstractThis paper focuses on the stochastically exponential synchronization problem for one class of neural networks with time-varying delays (TDs) and Markov jump parameters (MJPs). To derive a tighter bound of reciprocally convex quadratic terms, we provide an improved reciprocally convex combination inequality (RCCI), which includes some existing ones as its particular cases. We construct an eligible stochastic Lyapunov–Krasovskii functional to capture more information about TDs, triggering signals, and MJPs. Based on a well-designed event-triggered control scheme, we derive several novel stability criteria for the underlying systems by employing the new RCCI and other analytical techniques. Finally, we present two numerical examples to show the validity of our methods.


2020 ◽  
Vol 25 (2) ◽  
Author(s):  
Shanmugam Saravanan ◽  
M. Syed Ali ◽  
Ahmed Alsaedi ◽  
Bashir Ahmad

In this paper, we investigated the problem of the finite-time boundedness and finitetime passivity for neural networks with time-varying delays. A triple, quadrable and five integral terms with the delay information are introduced in the new Lyapunov–Krasovskii functional (LKF). Based on the auxiliary integral inequality, Writinger integral inequality and Jensen’s inequality, several sufficient conditions are derived. Finally, numerical examples are provided to verify the effectiveness of the proposed criterion. There results are compared with the existing results. 


2021 ◽  
Vol 8 (3) ◽  
pp. 486-498
Author(s):  
N. Jayanthi ◽  
◽  
R. Santhakumari ◽  

This paper deals with the problem of finite-time projective synchronization for a class of neutral-type complex-valued neural networks (CVNNs) with time-varying delays. A simple state feedback control protocol is developed such that slave CVNNs can be projective synchronized with the master system in finite time. By employing inequalities technique and designing new Lyapunov--Krasovskii functionals, various novel and easily verifiable conditions are obtained to ensure the finite-time projective synchronization. It is found that the settling time can be explicitly calculated for the neutral-type CVNNs. Finally, two numerical simulation results are demonstrated to validate the theoretical results of this paper.


2017 ◽  
Vol 238 ◽  
pp. 67-75 ◽  
Author(s):  
Mingwen Zheng ◽  
Lixiang Li ◽  
Haipeng Peng ◽  
Jinghua Xiao ◽  
Yixian Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document