Finite-time stability of neutral-type neural networks with random time-varying delays

2017 ◽  
Vol 48 (15) ◽  
pp. 3279-3295 ◽  
Author(s):  
M. Syed Ali ◽  
S. Saravanan ◽  
Quanxin Zhu
2017 ◽  
Vol 238 ◽  
pp. 67-75 ◽  
Author(s):  
Mingwen Zheng ◽  
Lixiang Li ◽  
Haipeng Peng ◽  
Jinghua Xiao ◽  
Yixian Yang ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3321
Author(s):  
Issaraporn Khonchaiyaphum ◽  
Nayika Samorn ◽  
Thongchai Botmart ◽  
Kanit Mukdasai

This research study investigates the issue of finite-time passivity analysis of neutral-type neural networks with mixed time-varying delays. The time-varying delays are distributed, discrete and neutral in that the upper bounds for the delays are available. We are investigating the creation of sufficient conditions for finite boundness, finite-time stability and finite-time passivity, which has never been performed before. First, we create a new Lyapunov–Krasovskii functional, Peng–Park’s integral inequality, descriptor model transformation and zero equation use, and then we use Wirtinger’s integral inequality technique. New finite-time stability necessary conditions are constructed in terms of linear matrix inequalities in order to guarantee finite-time stability for the system. Finally, numerical examples are presented to demonstrate the result’s effectiveness. Moreover, our proposed criteria are less conservative than prior studies in terms of larger time-delay bounds.


2021 ◽  
pp. 1-14
Author(s):  
Zhenjie Wang ◽  
Wenxia Cui ◽  
Wenbin Jin

This paper mainly considers the finite-time synchronization problem of fuzzy inertial cellular neural networks (FICNNs) with time-varying delays. By constructing the suitable Lyapunov functional, and using integral inequality techniques, several sufficient criteria have been proposed to ensure the finite-time synchronization for the addressed (FICNNs). Without applying the known finite-time stability theorem, which is widely used to solve the finite-time synchronization problems for (FICNNs). In this paper, the proposed method is relatively convenient to solve finite-time synchronization problem of the addressed system, this paper extends the research works on the finite-time synchronization of (FICNNs). Finally, numerical simulations illustrated verify the effectiveness of the proposed results.


Author(s):  
Le Anh Tuan

This paper addresses the problem of finite-time boundedness for discrete-time neural networks with interval-like time-varying delays. First, a delay-dependent finite-time boundedness criterion under the finite-time  performance index for the system is given based on constructing a set of adjusted Lyapunov–Krasovskii functionals and using reciprocally convex approach. Next, a sufficient condition is drawn directly which ensures the finite-time stability of the corresponding nominal system. Finally, numerical examples are provided to illustrate the validity and applicability of the presented conditions. Keywords: Discrete-time neural networks,  performance, finite-time stability, time-varying delay, linear matrix inequality.  


Sign in / Sign up

Export Citation Format

Share Document