finite time boundedness
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 45)

H-INDEX

20
(FIVE YEARS 5)

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 65
Author(s):  
Thanasak Mouktonglang ◽  
Suriyon Yimnet

The problem of finite-time boundedness for a class of linear switched positive time-varying delay systems with interval uncertainties and exogenous disturbance is addressed. This characteristic research is that the studied systems include the finite-time bounded subsystems and finite-time unbounded subsystems. Both a slow mode-dependent average dwell time and a fast mode-dependent average dwell time switching techniques are utilized reasonably. And by applying a copositive Lyapunov-Krasovskii functional, novel delay-dependent sufficient criteria are derived to guarantee such systems to be finite-time bounded concerning the given parameters and designed switching signal. Furthermore, new finite-time boundedness criteria of the systems without interval uncertainties are also obtained. Finally, the efficiency of the theoretical results is presented in two illustrative examples.


2021 ◽  
Author(s):  
Jiajia Li ◽  
Xin Tian ◽  
Guoliang Wei

Abstract In this paper, a protocol-based controller is designed for Cyber-Physical Systems (CPSs) with multiple sensors, which are powered by environment-dependent energy harvesting (EDEH) devices, respectively. The Round-Robin (RR) protocol is adopted to coordinate the data transmission of sensors. The protocol-based transmission can be realized only when the energy harvested by EDEH devices is sufficient. The aim of this paper is to design the protocol-based controller to ensure the stochastic finite-time boundedness (FTB) with EDEH and RR protocol. Firstly, modeling the EDEH by a switching sequence with varying sojourn probabilities, assuming a finite battery capacity constraint, and associating protocol-based transmission with a given energy cost, we propose a new recursive model to depict the dynamic of energy levels for each sensor. Then, combining with stochastic analysis and the dynamic of energy levels, the explicit expressions of the controller for each environment with average dwell time (ADT) are obtained. Finally, an example is provided to demonstrate the effectiveness of the designed controllers.


Author(s):  
Hongping Niu ◽  
Lin Li ◽  
Pengnan Wang

This paper is concerned with the problem of mode-dependent robust and non-fragile finite-time [Formula: see text] control for a class of nonlinear singular Markovian jump systems (NSMJSs) with parameter uncertainties and time-varying norm-bounded disturbance. Some sufficient conditions ensuring the singular stochastic [Formula: see text] finite-time boundedness (SS[Formula: see text]FTB) are developed for the given system by using the stochastic analysis and linear matrix inequality techniques. Then, a finite-time [Formula: see text] state feedback controller is designed, which can guarantee the [Formula: see text] finite-time boundedness of the closed-loop systems. Furthermore, a robust and non-fragile finite-time [Formula: see text] state feedback controller is also provided to ensure the [Formula: see text] finite-time boundedness of the closed-loop systems when the controller gain has an additive perturbation. Finally, two numerical examples are given to illustrate the effectiveness of the obtained results.


Author(s):  
Mengying Ding ◽  
Yali Dong

This paper is concerned with the problem of robust finite-time boundedness for the discrete-time neural networks with time-varying delays. By constructing an appropriate Lyapunov-Krasovskii functional, we propose the sufficient conditions which ensure the robust finite-time boundedness of the discrete-time neural networks with time-varying delay in terms of linear matrix inequalities. Then the sufficient conditions of robust finite-time stability for the discrete-time neural networks with time-varying delays are given. Finally, a numerical example is presented to illustrate the efficiency of proposed methods.


Sign in / Sign up

Export Citation Format

Share Document