scholarly journals LMI-Based Results on Robust Exponential Passivity of Uncertain Neutral-Type Neural Networks with Mixed Interval Time-Varying Delays via the Reciprocally Convex Combination Technique

Computation ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 70
Author(s):  
Nayika Samorn ◽  
Narongsak Yotha ◽  
Pantiwa Srisilp ◽  
Kanit Mukdasai

The issue of the robust exponential passivity analysis for uncertain neutral-type neural networks with mixed interval time-varying delays is discussed in this work. For our purpose, the lower bounds of the delays are allowed to be either positive or zero adopting the combination of the model transformation, various inequalities, the reciprocally convex combination, and suitable Lyapunov–Krasovskii functional. A new robust exponential passivity criterion is received and formulated in the form of linear matrix inequalities (LMIs). Moreover, a new exponential passivity criterion is also examined for systems without uncertainty. Four numerical examples indicate our potential results exceed the previous results.

2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
W. Weera ◽  
P. Niamsup

This paper deals with the problem of stability for a class of Lur’e systems with interval time-varying delay and sector-bounded nonlinearity. The interval time-varying delay function is not assumed to be differentiable. We analyze the global exponential stability for uncertain neutral and Lur’e dynamical systems with some sector conditions. By constructing a set of improved Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, we establish some stability criteria in terms of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness of the results.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
W. Weera ◽  
P. Niamsup

The problem of exponential stabilization of neutral-type neural networks with various activation functions and interval nondifferentiable and distributed time-varying delays is considered. The interval time-varying delay function is not required to be differentiable. By employing new and improved Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, the stabilizability criteria are formulated in terms of a linear matrix inequalities. Numerical examples are given to illustrate and show the effectiveness of the obtained results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sunisa Luemsai ◽  
Thongchai Botmart ◽  
Wajaree Weera

AbstractThe problem of asymptotic stability and extended dissipativity analysis for the generalized neural networks with interval discrete and distributed time-varying delays is investigated. Based on a suitable Lyapunov–Krasovskii functional (LKF), an improved Wirtinger single integral inequality, a novel triple integral inequality, and convex combination technique, the new asymptotic stability and extended dissipativity criteria are achieved for the generalized neural networks with interval discrete and distributed time-varying delays. By the above methods, the less conservative asymptotic stability criteria are obtained for a special case of the generalized neural networks. By using the Matlab LMI toolbox, the derived new asymptotic stability and extended dissipativity criteria are expressed in terms of linear matrix inequalities (LMIs) that cover $H_{\infty }$ H ∞ , $L_{2}$ L 2 –$L_{\infty }$ L ∞ , passivity, and dissipativity performance by setting parameters in the general performance index. Finally, we show numerical examples which are less conservative than other examples in the literature. Moreover, we present numerical examples for asymptotic stability and extended dissipativity performance of the generalized neural networks, including a special case of the generalized neural networks.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Sreten Stojanovic ◽  
Milan Stojanovic ◽  
Milos Stevanovic

The delay-dependent stability problem is investigated for discrete-time neural networks with time-varying delays. A new augmented Lyapunov-Krasovskii functional (LKF) with single and double summation terms and several augmented vectors is proposed by decomposing the time-delay interval into two nonequidistant subintervals to derive less conservative stability conditions. Then, by using Wirtinger-based inequality, reciprocally, and extended reciprocally convex combination lemmas, tight estimations for sum terms in the forward difference of the LKF are given. Several zero equalities are introduced to further relax the existing results. Less conservative stability criteria are proposed in terms of linear matrix inequalities (LMIs). Finally, numerical examples are proposed to show the effectiveness and less conservativeness of the proposed method.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
O. M. Kwon ◽  
M. J. Park ◽  
Ju H. Park ◽  
S. M. Lee ◽  
E. J. Cha

The purpose of this paper is to investigate the delay-dependent stability analysis for discrete-time neural networks with interval time-varying delays. Based on Lyapunov method, improved delay-dependent criteria for the stability of the networks are derived in terms of linear matrix inequalities (LMIs) by constructing a suitable Lyapunov-Krasovskii functional and utilizing reciprocally convex approach. Also, a new activation condition which has not been considered in the literature is proposed and utilized for derivation of stability criteria. Two numerical examples are given to illustrate the effectiveness of the proposed method.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Zerong Ren ◽  
Jun-kang Tian

This paper focuses on delay-dependent stability analysis for systems with interval time-varying delays. Based on a new integral inequality and a generalized reciprocally convex combination matrix inequality, a new delay-dependent stability criterion is obtained in terms of a linear matrix inequality (LMI). Finally, the merits of the proposed criterion are shown by two numerical examples.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Kaibo Shi ◽  
Hong Zhu ◽  
Shouming Zhong ◽  
Yong Zeng ◽  
Yuping Zhang ◽  
...  

This paper investigates the problem of dependent stability criteria for neutral type neural networks with mixed time-varying delays. Firstly, some new delay-dependent stability results are obtained by employing the more general partitioning approach and generalizing the famous Jensen inequality. Secondly, based on a new type of Lyapunov-Krasovskii functional with the cross terms of variables, less conservative stability criteria are proposed in terms of linear matrix inequalities (LMIs). Furthermore, it is the first time that the idea of second-order convex combination and the property of quadratic convex function applied to the derivation of neutral type neural networks play an important role in reducing the conservatism of the paper. Finally, four numerical examples are given to show the effectiveness and the advantage of the proposed method.


2017 ◽  
Vol 10 (02) ◽  
pp. 1750027 ◽  
Author(s):  
Wei Zhang ◽  
Chuandong Li ◽  
Tingwen Huang

In this paper, the stability and periodicity of memristor-based neural networks with time-varying delays are studied. Based on linear matrix inequalities, differential inclusion theory and by constructing proper Lyapunov functional approach and using linear matrix inequality, some sufficient conditions are obtained for the global exponential stability and periodic solutions of memristor-based neural networks. Finally, two illustrative examples are given to demonstrate the results.


Sign in / Sign up

Export Citation Format

Share Document