Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots

2012 ◽  
Vol 30 (1) ◽  
pp. 44-63 ◽  
Author(s):  
Keiji Nagatani ◽  
Seiga Kiribayashi ◽  
Yoshito Okada ◽  
Kazuki Otake ◽  
Kazuya Yoshida ◽  
...  
Author(s):  
Robert A. Leishear

Water hammers, or fluid transients, compress flammable gasses to their autognition temperatures in piping systems to cause fires or explosions. While this statement may be true for many industrial systems, the focus of this research are reactor coolant water systems (RCW) in nuclear power plants, which generate flammable gasses during normal operations and during accident conditions, such as loss of coolant accidents (LOCA’s) or reactor meltdowns. When combustion occurs, the gas will either burn (deflagrate) or explode, depending on the system geometry and the quantity of the flammable gas and oxygen. If there is sufficient oxygen inside the pipe during the compression process, an explosion can ignite immediately. If there is insufficient oxygen to initiate combustion inside the pipe, the flammable gas can only ignite if released to air, an oxygen rich environment. This presentation considers the fundamentals of gas compression and causes of ignition in nuclear reactor systems. In addition to these ignition mechanisms, specific applications are briefly considered. Those applications include a hydrogen fire following the Three Mile Island meltdown, hydrogen explosions following Fukushima Daiichi explosions, and on-going fires and explosions in U.S nuclear power plants. Novel conclusions are presented here as follows. 1. A hydrogen fire was ignited by water hammer at Three Mile Island. 2. Hydrogen explosions were ignited by water hammer at Fukushima Daiichi. 3. Piping damages in U.S. commercial nuclear reactor systems have occurred since reactors were first built. These damages were not caused by water hammer alone, but were caused by water hammer compression of flammable hydrogen and resultant deflagration or detonation inside of the piping.


Author(s):  
Jay F. Kunze ◽  
James M. Mahar ◽  
Kellen M. Giraud ◽  
C. W. Myers

Siting of nuclear power plants in an underground nuclear park has been proposed by the authors in many previous publications, first focusing on how the present 1200 to 1600 MW-electric light water reactors could be sited underground, then including reprocessing and fuel manufacturing facilities, as well as high level permanent waste storage. Recently the focus has been on siting multiple small modular reactor systems. The recent incident at the Fukushima Daiichi site has prompted the authors to consider what the effects of a natural disaster such as the Japan earthquake and subsequent tsunami would have had if these reactors had been located underground. This paper addresses how the reactors might have remained operable — assuming the designs we previously proposed — and what lessons from the Fukushima incident can be learned for underground nuclear power plant designs.


Author(s):  
L. Sihver ◽  
N. Yasuda

In this paper, the causes and the radiological consequences of the explosion of the Chernobyl reactor occurred at 1:23 a.m. (local time) on Apr. 26, 1986, and of the Fukushima Daiichi nuclear disaster following the huge Tsunami caused by the Great East Japan earthquake at 2.46 p.m. (local time) on Mar. 11, 2011 are discussed. The need for better severe accident management (SAM), and severe accident management guidelines (SAMGs), are essential in order to increase the safety of the existing and future operating nuclear power plants (NPPs). In addition to that, stress tests should, on a regular basis, be performed to assess whether the NPPs can withstand the effects of natural disasters and man-made failures and actions. The differences in safety preparations at the Chernobyl and Fukushima Daiichi will therefore be presented, as well as recommendations concerning improvements of safety culture, decontamination, and disaster planning. The need for a high-level national emergency response system in case of nuclear accidents will be discussed. The emergency response system should include fast alarms, communication between nuclear power plants, nuclear power authorities and the public people, as well as well-prepared and well-established evacuation plans and evacuation zones. The experiences of disaster planning and the development of a new improved emergency response system in Japan will also be presented together with the training and education program, which have been established to ensure that professional rescue workers, including medical staff, fire fighters, and police, as well as the normal populations including patients, have sufficient knowledge about ionizing radiation and are informed about the meaning of radiation risks and safety.


2016 ◽  
Vol 2 (0) ◽  
pp. 16-00092-16-00092 ◽  
Author(s):  
Daisuke YAMAUCHI ◽  
Byeongnam JO ◽  
Nejdet ERKAN ◽  
Shinji TAKAHASHI ◽  
Wataru SAGAWA ◽  
...  

2019 ◽  
Vol 205 (12) ◽  
pp. 1652-1660 ◽  
Author(s):  
Yuichi Morimoto ◽  
Masanori Akaike ◽  
Satoshi Takeo ◽  
Hiromi Maruyama

Sign in / Sign up

Export Citation Format

Share Document