The evolution of the mixing rate of a simple random walk on the giant component of a random graph

2008 ◽  
Vol 33 (1) ◽  
pp. 68-86 ◽  
Author(s):  
N. Fountoulakis ◽  
B.A. Reed
2007 ◽  
Vol 09 (04) ◽  
pp. 585-603 ◽  
Author(s):  
NOGA ALON ◽  
ITAI BENJAMINI ◽  
EYAL LUBETZKY ◽  
SASHA SODIN

We compute the mixing rate of a non-backtracking random walk on a regular expander. Using some properties of Chebyshev polynomials of the second kind, we show that this rate may be up to twice as fast as the mixing rate of the simple random walk. The closer the expander is to a Ramanujan graph, the higher the ratio between the above two mixing rates is. As an application, we show that if G is a high-girth regular expander on n vertices, then a typical non-backtracking random walk of length n on G does not visit a vertex more than [Formula: see text] times, and this result is tight. In this sense, the multi-set of visited vertices is analogous to the result of throwing n balls to n bins uniformly, in contrast to the simple random walk on G, which almost surely visits some vertex Ω( log n) times.


Author(s):  
Mark Newman

An introduction to the mathematics of the Poisson random graph, the simplest model of a random network. The chapter starts with a definition of the model, followed by derivations of basic properties like the mean degree, degree distribution, and clustering coefficient. This is followed with a detailed derivation of the large-scale structural properties of random graphs, including the position of the phase transition at which a giant component appears, the size of the giant component, the average size of the small components, and the expected diameter of the network. The chapter ends with a discussion of some of the shortcomings of the random graph model.


1976 ◽  
Vol 13 (02) ◽  
pp. 355-356 ◽  
Author(s):  
Aidan Sudbury

Particles are situated on a rectangular lattice and proceed to invade each other's territory. When they are equally competitive this creates larger and larger blocks of one type as time goes by. It is shown that the expected size of such blocks is equal to the expected range of a simple random walk.


2000 ◽  
Vol 16 (3-4) ◽  
pp. 399-406
Author(s):  
W. Katzenbeisser ◽  
W. Panny

2008 ◽  
Vol 32 (4) ◽  
pp. 401-439 ◽  
Author(s):  
Colin Cooper ◽  
Alan Frieze

1996 ◽  
Vol 33 (1) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.


2021 ◽  
Author(s):  
Thi Thi Zin ◽  
Pyke Tin ◽  
Pann Thinzar Seint ◽  
Kosuke Sumi ◽  
Ikuo Kobayashi ◽  
...  

2010 ◽  
Vol 149 (2) ◽  
pp. 351-372
Author(s):  
WOUTER KAGER ◽  
LIONEL LEVINE

AbstractInternal diffusion-limited aggregation is a growth model based on random walk in ℤd. We study how the shape of the aggregate depends on the law of the underlying walk, focusing on a family of walks in ℤ2 for which the limiting shape is a diamond. Certain of these walks—those with a directional bias toward the origin—have at most logarithmic fluctuations around the limiting shape. This contrasts with the simple random walk, where the limiting shape is a disk and the best known bound on the fluctuations, due to Lawler, is a power law. Our walks enjoy a uniform layering property which simplifies many of the proofs.


1992 ◽  
Vol 29 (02) ◽  
pp. 305-312 ◽  
Author(s):  
W. Katzenbeisser ◽  
W. Panny

Let Qn denote the number of times where a simple random walk reaches its maximum, where the random walk starts at the origin and returns to the origin after 2n steps. Such random walks play an important role in probability and statistics. In this paper the distribution and the moments of Qn , are considered and their asymptotic behavior is studied.


Sign in / Sign up

Export Citation Format

Share Document