scholarly journals Counting without sampling: Asymptotics of the log-partition function for certain statistical physics models

2008 ◽  
Vol 33 (4) ◽  
pp. 452-479 ◽  
Author(s):  
Antar Bandyopadhyay ◽  
David Gamarnik
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Adam Jermyn

The evaluation of partition functions is a central problem in statistical physics. For lattice systems and other discrete models the partition function may be expressed as the contraction of a tensor network. Unfortunately computing such contractions is difficult, and many methods to make this tractable require periodic or otherwise structured networks. Here I present a new algorithm for contracting unstructured tensor networks. This method makes no assumptions about the structure of the network and performs well in both structured and unstructured cases so long as the correlation structure is local.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 196
Author(s):  
Guillermo Chacón-Acosta ◽  
Vanessa Ángeles-Sánchez

In kinetic exchange models, agents make transactions based on well-established microscopic rules that give rise to macroscopic variables in analogy to statistical physics. These models have been applied to study processes such as income and wealth distribution, economic inequality sources, economic growth, etc., recovering well-known concepts in the economic literature. In this work, we apply ensemble formalism to a geometric agents model to study the effect of saving propensity in a system with money, credit, and debt. We calculate the partition function to obtain the total money of the system, with which we give an interpretation of the economic temperature in terms of the different payment methods available to the agents. We observe an interplay between the fraction of money that agents can save and their maximum debt. The system’s entropy increases as a function of the saved proportion, and increases even more when there is debt.


10.37236/1098 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
David J. Galvin

With a graph $G=(V,E)$ we associate a collection of non-negative real weights $\bigcup_{v\in V}\{\lambda_{i,v}:1\leq i \leq m\} \cup \bigcup_{uv \in E} \{\lambda_{ij,uv}:1\leq i \leq j \leq m\}.$ We consider the probability distribution on $\{f:V\rightarrow\{1,\ldots,m\}\}$ in which each $f$ occurs with probability proportional to $\prod_{v \in V}\lambda_{f(v),v}\prod_{uv \in E}\lambda_{f(u)f(v),uv}$. Many well-known statistical physics models, including the Ising model with an external field and the hard-core model with non-uniform activities, can be framed as such a distribution. We obtain an upper bound, independent of $G$, for the partition function (the normalizing constant which turns the assignment of weights on $\{f:V\rightarrow\{1,\ldots,m\}\}$ into a probability distribution) in the case when $G$ is a regular bipartite graph. This generalizes a bound obtained by Galvin and Tetali who considered the simpler weight collection $\{\lambda_i:1 \leq i \leq m\} \cup \{\lambda_{ij}:1 \leq i \leq j \leq m\}$ with each $\lambda_{ij}$ either $0$ or $1$ and with each $f$ chosen with probability proportional to $\prod_{v \in V}\lambda_{f(v)}\prod_{uv \in E}\lambda_{f(u)f(v)}$. Our main tools are a generalization to list homomorphisms of a result of Galvin and Tetali on graph homomorphisms and a straightforward second-moment computation.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Arvind Ayyer ◽  
Volker Strehl

International audience In recent work on nonequilibrium statistical physics, a certain Markovian exclusion model called an asymmetric annihilation process was studied by Ayyer and Mallick. In it they gave a precise conjecture for the eigenvalues (along with the multiplicities) of the transition matrix. They further conjectured that to each eigenvalue, there corresponds only one eigenvector. We prove the first of these conjectures by generalizing the original Markov matrix by introducing extra parameters, explicitly calculating its eigenvalues, and showing that the new matrix reduces to the original one by a suitable specialization. In addition, we outline a derivation of the partition function in the generalized model, which also reduces to the one obtained by Ayyer and Mallick in the original model. Dans un travail récent sur la physique statistique hors équilibre, un certain modèle d'exclusion Markovien appelé "processus d'annihilation asymétrique'' a été étudié par Ayyer et Mallick. Dans ce document, ils ont donné une conjecture précise pour les valeurs propres (avec les multiplicités) de la matrice stochastique. Ils ont en outre supposé que, pour chaque valeur propre, correspond un seul vecteur propre. Nous prouvons la première de ces conjectures en généralisant la matrice originale de Markov par l'introduction de paramètres supplémentaires, calculant explicitement ses valeurs propres, et en montrant que la nouvelle matrice se réduit à l'originale par une spécialisation appropriée. En outre, nous présentons un calcul de la fonction de partition dans le modèle généralisé, ce qui réduit également à celle obtenue par Ayyer et Mallick dans le modèle original.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Hernando Quevedo ◽  
María N. Quevedo

We formulate the thermodynamics of economic systems in terms of an arbitrary probability distribution for a conserved economic quantity. As in statistical physics, thermodynamic macroeconomic variables emerge as the mean value of microeconomic variables, and their determination is reduced to the computation of the partition function, starting from an arbitrary function. Explicit hypothetical examples are given which include linear and nonlinear economic systems as well as multiplicative systems such as those dominated by a Pareto law distribution. It is shown that the macroeconomic variables can be drastically changed by choosing the microeconomic variables in an appropriate manner. We propose to use the formalism of phase transitions to study severe changes of macroeconomic variables.


2020 ◽  
Author(s):  
Malcolm P. Kennett
Keyword(s):  

Author(s):  
Tomoyasu Tanaka
Keyword(s):  

1988 ◽  
Vol 156 (11) ◽  
pp. 427 ◽  
Author(s):  
A.N. Semenov ◽  
Alexei R. Khokhlov

Sign in / Sign up

Export Citation Format

Share Document