Doubly robust estimators of causal exposure effects with missing data in the outcome, exposure or a confounder

2012 ◽  
Vol 31 (30) ◽  
pp. 4382-4400 ◽  
Author(s):  
E.J. Williamson ◽  
A. Forbes ◽  
R. Wolfe
2018 ◽  
Vol 20 (1) ◽  
pp. 42-57
Author(s):  
Lisa Hermans ◽  
Anna Ivanova ◽  
Cristina Sotto ◽  
Geert Molenberghs ◽  
Geert Verbeke ◽  
...  

Missing data is almost inevitable in correlated-data studies. For non-Gaussian outcomes with moderate to large sequences, direct-likelihood methods can involve complex, hard-to-manipulate likelihoods. Popular alternative approaches, like generalized estimating equations, that are frequently used to circumvent the computational complexity of full likelihood, are less suitable when scientific interest, at least in part, is placed on the association structure; pseudo-likelihood (PL) methods are then a viable alternative. When the missing data are missing at random, Molenberghs et al. (2011, Statistica Sinica, 21,187–206) proposed a suite of corrections to the standard form of PL, taking the form of singly and doubly robust estimators. They provided the basis and exemplified it in insightful yet primarily illustrative examples. We here consider the important case of marginal models for hierarchical binary data, provide an effective implementation and illustrate it using data from an analgesic trial. Our doubly robust estimator is more convenient than the classical doubly robust estimators. The ideas are illustrated using a marginal model for a binary response, more specifically a Bahadur model.


Epidemiology ◽  
2010 ◽  
Vol 21 (6) ◽  
pp. 863-871 ◽  
Author(s):  
Kathleen E. Wirth ◽  
Eric J. Tchetgen Tchetgen ◽  
Megan Murray

Biostatistics ◽  
2020 ◽  
Author(s):  
Chien-Lin Su ◽  
Robert W Platt ◽  
Jean-François Plante

Summary Recurrent event data are commonly encountered in observational studies where each subject may experience a particular event repeatedly over time. In this article, we aim to compare cumulative rate functions (CRFs) of two groups when treatment assignment may depend on the unbalanced distribution of confounders. Several estimators based on pseudo-observations are proposed to adjust for the confounding effects, namely inverse probability of treatment weighting estimator, regression model-based estimators, and doubly robust estimators. The proposed marginal regression estimator and doubly robust estimators based on pseudo-observations are shown to be consistent and asymptotically normal. A bootstrap approach is proposed for the variance estimation of the proposed estimators. Model diagnostic plots of residuals are presented to assess the goodness-of-fit for the proposed regression models. A family of adjusted two-sample pseudo-score tests is proposed to compare two CRFs. Simulation studies are conducted to assess finite sample performance of the proposed method. The proposed technique is demonstrated through an application to a hospital readmission data set.


2019 ◽  
Vol 7 (4) ◽  
pp. 465-497
Author(s):  
Yaoyuan V Tan ◽  
Carol A C Flannagan ◽  
Michael R Elliott

Abstract Examples of “doubly robust” estimators for missing data include augmented inverse probability weighting (AIPWT) and penalized splines of propensity prediction (PSPP). Doubly robust estimators have the property that, if either the response propensity or the mean is modeled correctly, a consistent estimator of the population mean is obtained. However, doubly robust estimators can perform poorly when modest misspecification is present in both models. Here we consider extensions of the AIPWT and PSPP that use Bayesian additive regression trees (BART) to provide highly robust propensity and mean model estimation. We term these “robust-squared” in the sense that the propensity score, the means, or both can be estimated with minimal model misspecification, and applied to the doubly robust estimator. We consider their behavior via simulations where propensities and/or mean models are misspecified. We apply our proposed method to impute missing instantaneous velocity (delta-v) values from the 2014 National Automotive Sampling System Crashworthiness Data System dataset and missing Blood Alcohol Concentration values from the 2015 Fatality Analysis Reporting System dataset. We found that BART, applied to PSPP and AIPWT, provides a more robust estimate compared with PSPP and AIPWT.


2019 ◽  
Vol 6 (1) ◽  
pp. 125-148
Author(s):  
Edward H. Kennedy ◽  
Jacqueline A. Mauro ◽  
Michael J. Daniels ◽  
Natalie Burns ◽  
Dylan S. Small

In instrumental variable studies, missing instrument data are very common. For example, in the Wisconsin Longitudinal Study, one can use genotype data as a Mendelian randomization–style instrument, but this information is often missing when subjects do not contribute saliva samples or when the genotyping platform output is ambiguous. Here we review missing at random assumptions one can use to identify instrumental variable causal effects, and discuss various approaches for estimation and inference. We consider likelihood-based methods, regression and weighting estimators, and doubly robust estimators. The likelihood-based methods yield the most precise inference and are optimal under the model assumptions, while the doubly robust estimators can attain the nonparametric efficiency bound while allowing flexible nonparametric estimation of nuisance functions (e.g., instrument propensity scores). The regression and weighting estimators can sometimes be easiest to describe and implement. Our main contribution is an extensive review of this wide array of estimators under varied missing-at-random assumptions, along with discussion of asymptotic properties and inferential tools. We also implement many of the estimators in an analysis of the Wisconsin Longitudinal Study, to study effects of impaired cognitive functioning on depression.


Sign in / Sign up

Export Citation Format

Share Document