robust estimation
Recently Published Documents





2022 ◽  
Vol 421 ◽  
pp. 126915
A.S.M. Bakibillah ◽  
Yong Hwa Tan ◽  
Junn Yong Loo ◽  
Chee Pin Tan ◽  
M.A.S. Kamal ◽  

Saverio Francini ◽  
Ronald E. McRoberts ◽  
Giovanni D'Amico ◽  
Nicholas C. Coops ◽  
Txomin Hermosilla ◽  

2022 ◽  
Vol 14 (1) ◽  
pp. 228
Asim Khan ◽  
Warda Asim ◽  
Anwaar Ulhaq ◽  
Randall W. Robinson

Urban vegetation growth is vital for developing sustainable and liveable cities in the contemporary era since it directly helps people’s health and well-being. Estimating vegetation cover and biomass is commonly done by calculating various vegetation indices for automated urban vegetation management and monitoring. However, most of these indices fail to capture robust estimation of vegetation cover due to their inherent focus on colour attributes with limited viewpoint and ignore seasonal changes. To solve this limitation, this article proposed a novel vegetation index called the Multiview Semantic Vegetation Index (MSVI), which is robust to color, viewpoint, and seasonal variations. Moreover, it can be applied directly to RGB images. This Multiview Semantic Vegetation Index (MSVI) is based on deep semantic segmentation and multiview field coverage and can be integrated into any vegetation management platform. This index has been tested on Google Street View (GSV) imagery of Wyndham City Council, Melbourne, Australia. The experiments and training achieved an overall pixel accuracy of 89.4% and 92.4% for FCN and U-Net, respectively. Thus, the MSVI can be a helpful instrument for analysing urban forestry and vegetation biomass since it provides an accurate and reliable objective method for assessing the plant cover at street level.

2021 ◽  
Ye Xiaoming

Abstract In measurement practice, the residuals in least squares adjustment usually show various abnormal discrete distributions, including outliers, which is not conducive to the optimization of final measured values. Starting with the physical mechanism of dispersion and outlier of repeated observation errors, this paper puts forward the error correction idea of using the approximate function model of error to approach the actual function model of error step by step, gives a new theoretical method to optimize the final measured values, and proves the effectiveness of the algorithm by the ability of responding to the true values. This new idea is expected to be the ultimate answer of robust estimation theory.

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 159
Mehmed Batilović ◽  
Radovan Đurović ◽  
Zoran Sušić ◽  
Željko Kanović ◽  
Zoran Cekić

In this paper, an original modification of the generalised robust estimation of deformation from observation differences (GREDOD) method is presented with the application of two evolutionary optimisation algorithms, the genetic algorithm (GA) and generalised particle swarm optimisation (GPSO), in the procedure of robust estimation of the displacement vector. The iterative reweighted least-squares (IRLS) method is traditionally used to perform robust estimation of the displacement vector, i.e., to determine the optimal datum solution of the displacement vector. In order to overcome the main flaw of the IRLS method, namely, the inability to determine the global optimal datum solution of the displacement vector if displaced points appear in the set of datum network points, the application of the GA and GPSO algorithms, which are powerful global optimisation techniques, is proposed for the robust estimation of the displacement vector. A thorough and comprehensive experimental analysis of the proposed modification of the GREDOD method was conducted based on Monte Carlo simulations with the application of the mean success rate (MSR). A comparative analysis of the traditional approach using IRLS, the proposed modification based on the GA and GPSO algorithms and one recent modification of the iterative weighted similarity transformation (IWST) method based on evolutionary optimisation techniques is also presented. The obtained results confirmed the quality and practical usefulness of the presented modification of the GREDOD method, since it increased the overall efficiency by about 18% and can provide more reliable results for projects dealing with the deformation analysis of engineering facilities and parts of the Earth’s crust surface.

2021 ◽  
Vol 32 (1) ◽  
Umberto Amato ◽  
Anestis Antoniadis ◽  
Italia De Feis ◽  
Irène Gijbels

AbstractThis article studies M-type estimators for fitting robust additive models in the presence of anomalous data. The components in the additive model are allowed to have different degrees of smoothness. We introduce a new class of wavelet-based robust M-type estimators for performing simultaneous additive component estimation and variable selection in such inhomogeneous additive models. Each additive component is approximated by a truncated series expansion of wavelet bases, making it feasible to apply the method to nonequispaced data and sample sizes that are not necessarily a power of 2. Sparsity of the additive components together with sparsity of the wavelet coefficients within each component (group), results into a bi-level group variable selection problem. In this framework, we discuss robust estimation and variable selection. A two-stage computational algorithm, consisting of a fast accelerated proximal gradient algorithm of coordinate descend type, and thresholding, is proposed. When using nonconvex redescending loss functions, and appropriate nonconvex penalty functions at the group level, we establish optimal convergence rates of the estimates. We prove variable selection consistency under a weak compatibility condition for sparse additive models. The theoretical results are complemented with some simulations and real data analysis, as well as a comparison to other existing methods.

Methodology ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. 271-295
Fabio Mason ◽  
Eva Cantoni ◽  
Paolo Ghisletta

The linear mixed model (LMM) is a popular statistical model for the analysis of longitudinal data. However, the robust estimation of and inferential conclusions for the LMM in the presence of outliers (i.e., observations with very low probability of occurrence under Normality) is not part of mainstream longitudinal data analysis. In this work, we compared the coverage rates of confidence intervals (CIs) based on two bootstrap methods, applied to three robust estimation methods. We carried out a simulation experiment to compare CIs under three different conditions: data 1) without contamination, 2) contaminated by within-, or 3) between-participant outliers. Results showed that the semi-parametric bootstrap associated to the composite tau-estimator leads to valid inferential decisions with both uncontaminated and contaminated data. This being the most comprehensive study of CIs applied to robust estimators of the LMM, we provide fully commented R code for all methods applied to a popular example.

Sign in / Sign up

Export Citation Format

Share Document