An empirical evaluation of a three-tier conduit framework for multifaceted test case classification and selection using fuzzy-ant colony optimisation approach

2014 ◽  
Vol 45 (7) ◽  
pp. 949-971 ◽  
Author(s):  
Manoj Kumar ◽  
Arun Sharma ◽  
Rajesh Kumar
2015 ◽  
Vol 9 ◽  
pp. 193-203
Author(s):  
Mirzakhmet SYZDYKOV ◽  
◽  
Madi UZBEKOV ◽  

Algorithms ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 219
Author(s):  
Dhananjay Thiruvady ◽  
Kerri Morgan ◽  
Susan Bedingfield ◽  
Asef Nazari

The increasing demand for work-ready students has heightened the need for universities to provide work integrated learning programs to enhance and reinforce students’ learning experiences. Students benefit most when placements meet their academic requirements and graduate aspirations. Businesses and community partners are more engaged when they are allocated students that meet their industry requirements. In this paper, both an integer programming model and an ant colony optimisation heuristic are proposed, with the aim of automating the allocation of students to industry placements. The emphasis is on maximising student engagement and industry partner satisfaction. As part of the objectives, these methods incorporate diversity in industry sectors for students undertaking multiple placements, gender equity across placement providers, and the provision for partners to rank student selections. The experimental analysis is in two parts: (a) we investigate how the integer programming model performs against manual allocations and (b) the scalability of the IP model is examined. The results show that the IP model easily outperforms the previous manual allocations. Additionally, an artificial dataset is generated which has similar properties to the original data but also includes greater numbers of students and placements to test the scalability of the algorithms. The results show that integer programming is the best option for problem instances consisting of less than 3000 students. When the problem becomes larger, significantly increasing the time required for an IP solution, ant colony optimisation provides a useful alternative as it is always able to find good feasible solutions within short time-frames.


Author(s):  
Sudhir Kumar Mohapatra ◽  
Srinivas Prasad

Software testing is one in all the vital stages of system development. In software development, developers continually depend upon testing to reveal bugs. Within the maintenance stage test suite size grow due to integration of new functionalities. Addition of latest technique force to make new test case which increase the cost of test suite. In regression testing new test case could also be added to the test suite throughout the entire testing process. These additions of test cases produce risk of presence of redundant test cases. Because of limitation of time and resource, reduction techniques should be accustomed determine and take away. Analysis shows that a set of the test case in a suit should satisfy all the test objectives that is named as representative set. Redundant test case increase the execution price of the test suite, in spite of NP-completeness of the problem there are few sensible reduction techniques are available. During this paper the previous GA primarily based technique proposed is improved to search out cost optimum representative set using ant colony optimization.


Sign in / Sign up

Export Citation Format

Share Document