Method Engineering Approach for Interoperable Systems Development

2008 ◽  
Vol 13 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Xabier Larrucea
Author(s):  
Laila Niedrite ◽  
Maris Solodovnikova Treimanis ◽  
Liga Grundmane

There are many methods in the area of data warehousing to define requirements for the development of the most appropriate conceptual model of a data warehouse. There is no universal consensus about the best method, nor are there accepted standards for the conceptual modeling of data warehouses. Only few conceptual models have formally described methods how to get these models. Therefore, problems arise when in a particular data warehousing project, an appropriate development approach, and a corresponding method for the requirements elicitation, should be chosen and applied. Sometimes it is also necessary not only to use the existing methods, but also to provide new methods that are usable in particular development situations. It is necessary to represent these new methods formally, to ensure the appropriate usage of these methods in similar situations in the future. It is also necessary to define the contingency factors, which describe the situation where the method is usable.This chapter represents the usage of method engineering approach for the development of conceptual models of data warehouses. A set of contingency factors that determine the choice between the usage of an existing method and the necessity to develop a new one is defined. Three case studies are presented. Three new methods: userdriven, data-driven, and goal-driven are developed according to the situation in the particular projects and using the method engineering approach.


Author(s):  
Inge van de Weerd ◽  
Sjaak Brinkkemper

This chapter introduces an assembly-based method engineering approach for constructing situational analysis and design methods. The approach is supported by a meta-modeling technique, based on UML activity and class diagrams. Both the method engineering approach and meta-modeling technique will be explained and illustrated by case studies. The first case study describes the use of the meta-modeling technique in the analysis of method evolution. The next case study describes the use of situational method engineering, supported by the proposed meta-modeling technique, in method construction. With this research, the authors hope to provide researchers in the information system development domain with a useful approach for analyzing, constructing, and adapting methods.


Sign in / Sign up

Export Citation Format

Share Document