scholarly journals VP21.04: Fetal growth restriction and congenital heart defects: a systematic review and meta‐analysis

2021 ◽  
Vol 58 (S1) ◽  
pp. 183-183
Author(s):  
A. Ghanchi ◽  
N. Derridj ◽  
L.J. Salomon ◽  
B. Khoshnood
Author(s):  
Ali Ghanchi ◽  
Neil Derridj ◽  
Damien Bonnet ◽  
Nathalie Bertille ◽  
Laurent J. Salomon ◽  
...  

Newborns with congenital heart defects tend to have a higher risk of growth restriction, which can be an independent risk factor for adverse outcomes. To date, a systematic review of the relation between congenital heart defects (CHD) and growth restriction at birth, most commonly estimated by its imperfect proxy small for gestational age (SGA), has not been conducted. Objective: To conduct a systematic review and meta-analysis to estimate the proportion of children born with CHD that are small for gestational age (SGA). Methods: The search was carried out from inception until 31 March 2019 on Pubmed and Embase databases. Studies were screened and selected by two independent reviewers who used a predetermined data extraction form to obtain data from studies. Bias was assessed using the Critical Appraisal Skills Programme (CASP) checklist. The database search identified 1783 potentially relevant publications, of which 38 studies were found to be relevant to the study question. A total of 18 studies contained sufficient data for a meta-analysis, which was done using a random effects model. Results: The pooled proportion of SGA in all CHD was 20% (95% CI 16%–24%) and 14% (95% CI 13%–16%) for isolated CHD. Proportion of SGA varied across different CHD ranging from 30% (95% CI 24%–37%) for Tetralogy of Fallot to 12% (95% CI 7%–18%) for isolated atrial septal defect. The majority of studies included in the meta-analysis were population-based studies published after 2010. Conclusion: The overall proportion of SGA in all CHD was 2-fold higher whereas for isolated CHD, 1.4-fold higher than the expected proportion in the general population. Although few studies have looked at SGA for different subtypes of CHD, the observed variability of SGA by subtypes suggests that growth restriction at birth in CHD may be due to different pathophysiological mechanisms.


BMJ Open ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. e022743 ◽  
Author(s):  
Debora Farias Batista Leite ◽  
Aude-Claire Morillon ◽  
Elias F Melo Júnior ◽  
Renato T Souza ◽  
Ali S Khashan ◽  
...  

IntroductionFetal growth restriction (FGR) is a relevant research and clinical concern since it is related to higher risks of adverse outcomes at any period of life. Current predictive tools in pregnancy (clinical factors, ultrasound scan, placenta-related biomarkers) fail to identify the true growth-restricted fetus. However, technologies based on metabolomics have generated interesting findings and seem promising. In this systematic review, we will address diagnostic accuracy of metabolomics analyses in predicting FGR.Methods and analysisOur primary outcome is small for gestational age infant, as a surrogate for FGR, defined as birth weight below the 10th centile by customised or population-based curves for gestational age. A detailed systematic literature search will be carried in electronic databases and conference abstracts, using the keywords ‘fetal growth retardation’, ‘metabolomics’, ‘pregnancy’ and ‘screening’ (and their variations). We will include original peer-reviewed articles published from 1998 to 2018, involving pregnancies of fetuses without congenital malformations; sample collection must have been performed before clinical recognition of growth impairment. If additional information is required, authors will be contacted. Reviews, case reports, cross-sectional studies, non-human research and commentaries papers will be excluded. Sample characteristics and the diagnostic accuracy data will be retrieved and analysed. If data allows, we will perform a meta-analysis.Ethics and disseminationAs this is a systematic review, no ethical approval is necessary. This protocol will be publicised in our institutional websites and results will be submitted for publication in a peer-reviewed journal.PROSPERO registration numberCRD42018089985.


BMJ Open ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. e029467 ◽  
Author(s):  
Alessandra Bettiol ◽  
Niccolò Lombardi ◽  
Giada Crescioli ◽  
Laura Avagliano ◽  
Alessandro Mugelli ◽  
...  

IntroductionFetal growth restriction (FGR) includes different conditions in which a fetus fails to reach the own full growth, and accounts for 28%–45% of non-anomalous stillbirths. The management of FGR is based on the prolongation of pregnancy long enough for fetal organs to mature while preventing starvation. As for pharmacological management, most guidelines recommend treatment with low-dose aspirin and/or with heparin, although this approach is still controversial and innovative promising therapies are under investigation. As no firm evidence exists to guide clinicians towards the most effective therapeutic intervention, this protocol describes methods for a systematic review and network meta-analysis (NetMA) of pharmacological treatments for FGR prevention.Methods and analysisWe will search MEDLINE and Embase for clinical trials and observational studies performed on gestating women with clinically diagnosed risk of FGR. Experimental interventions will include heparin and low-molecular-weight heparin, acetylsalicylic acid, antiplatelet agents, phosphodiesterase type 3 and 5 inhibitors, maternal vascular endothelial growth factor gene therapy, nanoparticles, microRNA, statins, nitric oxide donors, hydrogen sulphide, proton pump inhibitors, melatonin, creatine and N-acetylcysteine, and insulin-like growth factors, compared between each other or to placebo or no treatment. Primary efficacy outcome is FGR. Secondary efficacy outcomes will be preterm birth, fetal or neonatal death and neonatal complications. For the safety outcome, all adverse events reported in included studies and experienced by either mothers, fetuses or newborns will be considered. Two review authors will independently screen title, abstract and full paper text, and will independently extract data from included studies. Where possible and appropriate, for primary and secondary efficacy outcomes, a NetMA will be performed using a random-effects model within a frequentist framework. Adverse events will be narratively described.Ethics and disseminationResults will be disseminated through a peer-reviewed scientific journal, and by scientific congresses and meetings.PROSPERO registration numberCRD42019122831.


The Lancet ◽  
2012 ◽  
Vol 379 (9835) ◽  
pp. 2459-2464 ◽  
Author(s):  
Shakila Thangaratinam ◽  
Kiritrea Brown ◽  
Javier Zamora ◽  
Khalid S Khan ◽  
Andrew K Ewer

Sign in / Sign up

Export Citation Format

Share Document