Comparison of pitching and plunging effects on the surface pressure variation of a wind turbine blade section

Wind Energy ◽  
2009 ◽  
Vol 12 (3) ◽  
pp. 213-239 ◽  
Author(s):  
M. R. Soltani ◽  
M. Seddighi ◽  
F. Rasi Marzabadi
2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Marcin Luczak ◽  
Simone Manzato ◽  
Bart Peeters ◽  
Kim Branner ◽  
Peter Berring ◽  
...  

This paper presents selected results and aspects of the multidisciplinary and interdisciplinary research oriented for the experimental and numerical study of the structural dynamics of a bend-twist coupled full scale section of a wind turbine blade structure. The main goal of the conducted research is to validate finite element model of the modified wind turbine blade section mounted in the flexible support structure accordingly to the experimental results. Bend-twist coupling was implemented by adding angled unidirectional layers on the suction and pressure side of the blade. Dynamic test and simulations were performed on a section of a full scale wind turbine blade provided by Vestas Wind Systems A/S. The numerical results are compared to the experimental measurements and the discrepancies are assessed by natural frequency difference and modal assurance criterion. Based on sensitivity analysis, set of model parameters was selected for the model updating process. Design of experiment and response surface method was implemented to find values of model parameters yielding results closest to the experimental. The updated finite element model is producing results more consistent with the measurement outcomes.


2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Tingrui Liu

The aim of this paper is to analyze aeroelastic stability, especially flutter suppression for aeroelastic instability. Effects of aeroservoelastic pitch control for flutter suppression on wind turbine blade section subjected to combined flap and lag motions are rarely studied. The work is dedicated to solving destructive flapwise and edgewise instability of stall-induced flutter of wind turbine blade by aeroservoelastic pitch control. The aeroelastic governing equations combine a flap/lag structural model and an unsteady nonlinear aerodynamic model. The nonlinear resulting equations are linearized by small perturbation about the equilibrium point. The instability characteristics of stall-induced flap/lag flutter are investigated. Pitch actuator is described by a second-order model. The aeroservoelastic control is analyzed by three types of optimal PID controllers, two types of fuzzy PID controllers, and neural network PID controllers. The fuzzy controllers are developed based on Sugeno model and intuition method with good results achieved. A single neuron PID control strategy with improved Hebb learning algorithm and a radial basic function neural network PID algorithm are applied and performed well in the range of extreme wind speeds.


Sign in / Sign up

Export Citation Format

Share Document