free stream turbulence
Recently Published Documents


TOTAL DOCUMENTS

871
(FIVE YEARS 84)

H-INDEX

49
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Aditya Vaid ◽  
Nagabhushana Rao Vadlamani ◽  
Ananth Sivaramakrishnan Malathi

2021 ◽  
Vol 931 ◽  
Author(s):  
Luca De Vincentiis ◽  
Dan S. Henningson ◽  
Ardeshir Hanifi

The instability of an incompressible boundary-layer flow over an infinite swept wing in the presence of disc-type roughness elements and free-stream turbulence (FST) has been investigated by means of direct numerical simulations. Our study corresponds to the experiments by Örlü et al. (Tech. Rep., KTH Royal Institute of Technology, 2021, http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291874). Here, different dimensions of the roughness elements and levels of FST have been considered. The aim of the present work is to investigate the experimentally observed sensitivity of the transition to the FST intensity. In the absence of FST, flow behind the roughness elements with a height above a certain value immediately undergoes transition to turbulence. Impulse–response analyses of the steady flow have been performed to identify the mechanism behind the observed flow instability. For subcritical roughness, the generated wave packet experiences a weak transient growth behind the roughness and then its amplitude decays as it is advected out of the computational domain. In the supercritical case, in which the flow transitions to turbulence, flow as expected exhibits an absolute instability. The presence of FST is found to have a significant impact on the transition behind the roughness, in particular in the case of a subcritical roughness height. For a height corresponding to a roughness Reynolds number $Re_{hh}=461$ , in the absence of FST the flow reaches a steady laminar state, while a very low FST intensity of $Tu =0.03\,\%$ causes the appearance of turbulence spots in the wake of the roughness. These randomly generated spots are advected out of the computational domain. For a higher FST level of $Tu=0.3\,\%$ , a turbulent wake is clearly visible behind the element, similar to that for the globally unstable case. The presented results confirm the experimental observations and explain the mechanisms behind the observed laminar–turbulent transition and its sensitivity to FST.


2021 ◽  
Vol 91 ◽  
pp. 108841
Author(s):  
Christophe Sicot ◽  
Rodolphe Perrin ◽  
Faisal Affejee ◽  
Jacques Borée

2021 ◽  
Vol 33 (10) ◽  
pp. 105108
Author(s):  
Pierre-Yves Passaggia ◽  
Nicolas Mazellier ◽  
Azeddine Kourta

2021 ◽  
pp. 1-13
Author(s):  
Christoph Gramespacher ◽  
Matthias Stripf ◽  
Hans-Jörg Bauer

Abstract Heat transfer measurements in transitional flat plate boundary layers subjected to surface roughness, strong pressure gradients and free stream turbulence are presented. The surfaces considered, consist of a smooth reference and twenty six deterministic surface topographies that vary in roughness element aspect ratio, height and density. They are designed to cover the full range of roughness regimes from smooth over transitionally rough to fully rough. For each surface, two pressure distributions, characteristic for a suction and a pressure side turbine vane, are investigated. Inlet Reynolds numbers range from 300000 to 600000 and inlet turbulence intensity is varied between 1 % to 8 %. Furthermore, different turbulence Reynolds numbers, i.e. turbulence length scales, are realized while the incident turbulence intensity is kept constant. Additionally, the turbulence intensity and Reynolds stress distributions in the free-stream along the flat plate are measured using x-wire probes. Results show a strong influence of roughness and turbulence intensity on the onset of transition. The new data set is used to develop an improved correlation considering the roughness height, density and shape as well as the turbulence intensity and turbulent length scales.


2021 ◽  
Vol 926 ◽  
Author(s):  
D. Burton ◽  
S. Wang ◽  
D. Tudball Smith ◽  
H. N. Scott ◽  
T. N. Crouch ◽  
...  

The discovery of wake bistability has generated an upsurge in experimental investigations into the wakes of simplified vehicle geometries. Particular focus has centred on the probabilistic switching between two asymmetrical bistable wake states of a square-back Ahmed body; however, the majority of this research has been undertaken in wind tunnels with turbulence intensities of less than $1\,\%$ , considerably lower than typical atmospheric levels. To better simulate bistability under on-road conditions, in which turbulence intensities can easily reach levels of $10\,\%$ or more, this experimental study investigates the effects of free-stream turbulence on the bistability characteristics of the square-back Ahmed body. Through passive generation and quantification of the free-stream turbulent conditions, a monotonic correlation was found between the switching rate and free-stream turbulence intensity.


2021 ◽  
Vol 33 (9) ◽  
pp. 094115
Author(s):  
M. Dellacasagrande ◽  
D. Lengani ◽  
D. Simoni ◽  
J. O. Pralits ◽  
K. Durovich ◽  
...  

Author(s):  
Ettore Bertolini ◽  
Paul Pieringer ◽  
Wolfgang Sanz

The aim of this work is to study the influence of different subgrid-scale (SGS) closure models and inflow turbulence conditions on the boundary layer transition on the suction side of a highly loaded transonic turbine cascade in the presence of high free-stream turbulence using large eddy simulations (LES) of the MUR237 test case. For the numerical simulations, the MUR237 flow case was considered and the incoming free-stream turbulence was reproduced using the synthetic eddy method (SEM). The boundary layer transition on the blade suction side was found to be significantly influenced by the choice of the SGS closure model and the SEM parameters. These two aspects were carefully evaluated in this work. Initially, the influence of three different closure models (Smagorinsky, WALE, and subgrid-scale kinetic energy model) was evaluated. Among them, the WALE SGS closure model performed best compared to the Smagorinsky and KEM models and, for this reason, was used in the following analysis. Finally, different values of the turbulence length scale, eddies density, and inlet turbulence for the SEM were evaluated. As shown by the results, among the different parameters, the choice of the turbulence length scale plays a major role in the transition onset on the blade suction side.


Sign in / Sign up

Export Citation Format

Share Document