scholarly journals The State Reduction and Related Algorithms and Their Applications to the Study of Markov Chains, Graph Theory, and the Optimal Stopping Problem

1999 ◽  
Vol 145 (2) ◽  
pp. 159-188 ◽  
Author(s):  
Isaac Sonin
2006 ◽  
Vol 43 (01) ◽  
pp. 102-113
Author(s):  
Albrecht Irle

We consider the optimal stopping problem for g(Z n ), where Z n , n = 1, 2, …, is a homogeneous Markov sequence. An algorithm, called forward improvement iteration, is presented by which an optimal stopping time can be computed. Using an iterative step, this algorithm computes a sequence B 0 ⊇ B 1 ⊇ B 2 ⊇ · · · of subsets of the state space such that the first entrance time into the intersection F of these sets is an optimal stopping time. Various applications are given.


2006 ◽  
Vol 43 (1) ◽  
pp. 102-113 ◽  
Author(s):  
Albrecht Irle

We consider the optimal stopping problem for g(Zn), where Zn, n = 1, 2, …, is a homogeneous Markov sequence. An algorithm, called forward improvement iteration, is presented by which an optimal stopping time can be computed. Using an iterative step, this algorithm computes a sequence B0 ⊇ B1 ⊇ B2 ⊇ · · · of subsets of the state space such that the first entrance time into the intersection F of these sets is an optimal stopping time. Various applications are given.


1973 ◽  
Vol 5 (4) ◽  
pp. 297-312 ◽  
Author(s):  
William M. Boyce

2014 ◽  
Vol 51 (03) ◽  
pp. 885-889 ◽  
Author(s):  
Tomomi Matsui ◽  
Katsunori Ano

In this note we present a bound of the optimal maximum probability for the multiplicative odds theorem of optimal stopping theory. We deal with an optimal stopping problem that maximizes the probability of stopping on any of the last m successes of a sequence of independent Bernoulli trials of length N, where m and N are predetermined integers satisfying 1 ≤ m < N. This problem is an extension of Bruss' (2000) odds problem. In a previous work, Tamaki (2010) derived an optimal stopping rule. We present a lower bound of the optimal probability. Interestingly, our lower bound is attained using a variation of the well-known secretary problem, which is a special case of the odds problem.


1969 ◽  
pp. 87-145
Author(s):  
Evgenii B. Dynkin ◽  
Aleksandr A. Yushkevich

Sign in / Sign up

Export Citation Format

Share Document