scholarly journals The Kernel Relation for a Completely Regular Semigroup

1995 ◽  
Vol 172 (1) ◽  
pp. 90-112 ◽  
Author(s):  
M. Petrich
1981 ◽  
Vol 33 (4) ◽  
pp. 893-900 ◽  
Author(s):  
J. A. Gerhard ◽  
Mario Petrich

A semigroup which is a union of groups is said to be completely regular. If in addition the idempotents form a subsemigroup, the semigroup is said to be orthodox and is called an orthogroup. A completely regular semigroup S is provided in a natural way with a unary operation of inverse by letting a-l for a ∈ S be the group inverse of a in the maximal subgroup of S to which a belongs. This unary operation satisfies the identities(1)(2)(3)In fact a completely regular semigroup can be defined as a unary semigroup (a semigroup with an added unary operation) satisfying these identities. An orthogroup can be characterized as a completely regular semigroup satisfying the additional identity(4)


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 327 ◽  
Author(s):  
Yingcang Ma ◽  
Xiaohong Zhang ◽  
Xiaofei Yang ◽  
Xin Zhou

Neutrosophic extended triplet group is a new algebra structure and is different from the classical group. In this paper, the notion of generalized neutrosophic extended triplet group is proposed and some properties are discussed. In particular, the following conclusions are strictly proved: (1) an algebraic system is a generalized neutrosophic extended triplet group if and only if it is a quasi-completely regular semigroup; (2) an algebraic system is a weak commutative generalized neutrosophic extended triplet group if and only if it is a quasi-Clifford semigroup; (3) for each n ∈ Z + , n ≥ 2 , ( Z n , ⊗ ) is a commutative generalized neutrosophic extended triplet group; (4) for each n ∈ Z + , n ≥ 2 , ( Z n , ⊗ ) is a commutative neutrosophic extended triplet group if and only if n = p 1 p 2 ⋯ p m , i.e., the factorization of n has only single factor.


Author(s):  
Dr. D. Mrudula Devi Et. al.

This paper deals with some results on commutative semigroups. We consider (s,.) is externally commutative right zero semigroup is regular if it is intra regular and (s,.) is externally commutative semigroup then every inverse semigroup  is u – inverse semigroup. We will also prove that if (S,.) is a H -  semigroup then weakly cancellative laws hold in H - semigroup. In one case we will take (S,.) is commutative left regular semi group and we will prove that (S,.) is ∏ - inverse semigroup. We will also consider (S,.) is commutative weakly balanced semigroup  and then prove every left (right) regular semigroup is weakly separate, quasi separate and separate. Additionally, if (S,.) is completely regular semigroup we will prove that (S,.) is permutable and weakly separtive. One a conclusing note we will show and prove some theorems related to permutable semigroups and GC commutative Semigroups.


2018 ◽  
Vol 7 (2.13) ◽  
pp. 306
Author(s):  
Sreeja V K

Let S be a unit regular semigroup with group of units G = G(S) and semilattice of idempotents E = E(S). Then for every there is a such that Then both xu and ux are idempotents and we can write or .Thus every element of a unit regular inverse monoid is a product of a group element and an idempotent. It is evident that every L-class and every R-class contains exactly one idempotent where L and R are two of Greens relations. Since inverse monoids are R unipotent, every element of a unit regular inverse monoid can be written as s = eu where the idempotent part e is unique and u is a unit. A completely regular semigroup is a semigroup in which every element is in some subgroup of the semigroup. A Clifford semigroup is a completely regular inverse semigroup. Characterization of unit regular inverse monoids in terms of the group of units and the semilattice of idempotents is a problem often attempted and in this direction we have studied the structure of unit regular inverse monoids and Clifford monoids. 


1984 ◽  
Vol 25 (2) ◽  
pp. 241-254 ◽  
Author(s):  
P. G. Trotter

A completely regular semigroup is a semigroup that is a union of groups. The aim here is to provide an alternative characterization of the free completely regular semigroup Fcrx on a set X to that given by J. A. Gerhard in [3, 4].Although the structure theory for completely regular semigroups was initiated in 1941 [1] by A. H. Clifford it was not until 1968 that it was shown by D. B. McAlister [5] that Fcrx exists. More recently, in [7], M. Petrich demonstrated the existence of Fcrx by showing that completely regular semigroups form a variety of unary semigroups (that is, semigroups with the additional operation of inversion).


Sign in / Sign up

Export Citation Format

Share Document