scholarly journals Free completely regular semigroups

1984 ◽  
Vol 25 (2) ◽  
pp. 241-254 ◽  
Author(s):  
P. G. Trotter

A completely regular semigroup is a semigroup that is a union of groups. The aim here is to provide an alternative characterization of the free completely regular semigroup Fcrx on a set X to that given by J. A. Gerhard in [3, 4].Although the structure theory for completely regular semigroups was initiated in 1941 [1] by A. H. Clifford it was not until 1968 that it was shown by D. B. McAlister [5] that Fcrx exists. More recently, in [7], M. Petrich demonstrated the existence of Fcrx by showing that completely regular semigroups form a variety of unary semigroups (that is, semigroups with the additional operation of inversion).

Author(s):  
Francis Pastijn

AbstractA completely regular semigroup is a semigroup which is a union of groups. The class CR of completely regular semigroups forms a variety. On the lattice L (CR) of completely regular semigroup varieties we define two closure operations which induce complete congruences. The consideration of a third complete congruence on L (CR) yields a subdirect decomposition of L (CR). Using these results we show that L (CR) is arguesian. This confirms the (tacit) conjecture that L (CR) is modular.


1977 ◽  
Vol 29 (6) ◽  
pp. 1171-1197 ◽  
Author(s):  
Mario Petrich

We adopt the following definition of a completely regular semigroup S: for every element a of S, there exists a unique element a-1 of S such that


1988 ◽  
Vol 109 (3-4) ◽  
pp. 329-339
Author(s):  
P.G. Trotter

SynopsisA subset Y of a free completely regular semigroup FCRx freely generates a free completely regular subsemigroup if and only if (i) each -class of FCRx contains at most one element of Y, (ii) {Dy;y ∊ Y} freely generates a free subsemilattice of the free semilattice FCRx/), and (iii) Y consists of non-idempotents. A similar description applies in free objects of some subvarieties of the variety of all completely regular semigroups.


1990 ◽  
Vol 32 (2) ◽  
pp. 137-152 ◽  
Author(s):  
Mario Petrich ◽  
Norman R. Reilly

A semigroup endowed with a unary operation satisfying the identitiesis a completely regular semigroup. In several recent papers devoted to the study of the lattice of subvarieties of the variety of completely regular semigroups, various results have been obtained which decompose special intervals in into either direct products or subdirect products. Petrich [14], Hall and Jones [6] and Rasin [20] have shown that certain intervals of the form , where is the trivial variety and are subdirect products of and Pastijn and Trotter [13] show that certain intervals of the form are direct products of the intervals and The main objective of this paper is to develop an appropriate lattice theoretic framework for these representations.


1997 ◽  
Vol 40 (3) ◽  
pp. 457-472 ◽  
Author(s):  
Mario Petrich

Let S be a regular semigroup and be its congruence lattice. For ρ ∈ , we consider the sublattice Lρ of generated by the congruences pw where w ∈ {K, k, T, t}* and w has no subword of the form KT, TK, kt, tk. Here K, k, T, t are the operators on induced by the kernel and the trace relations on . We find explicitly the least lattice L whose homomorphic image is Lρ for all ρ ∈ and represent it as a distributive lattice in terms of generators and relations. We also consider special cases: bands of groups, E-unitary regular semigroups, completely simple semigroups, rectangular groups as well as varieties of completely regular semigroups.


Author(s):  
Dr. D. Mrudula Devi Et. al.

This paper deals with some results on commutative semigroups. We consider (s,.) is externally commutative right zero semigroup is regular if it is intra regular and (s,.) is externally commutative semigroup then every inverse semigroup  is u – inverse semigroup. We will also prove that if (S,.) is a H -  semigroup then weakly cancellative laws hold in H - semigroup. In one case we will take (S,.) is commutative left regular semi group and we will prove that (S,.) is ∏ - inverse semigroup. We will also consider (S,.) is commutative weakly balanced semigroup  and then prove every left (right) regular semigroup is weakly separate, quasi separate and separate. Additionally, if (S,.) is completely regular semigroup we will prove that (S,.) is permutable and weakly separtive. One a conclusing note we will show and prove some theorems related to permutable semigroups and GC commutative Semigroups.


2018 ◽  
Vol 7 (2.13) ◽  
pp. 306
Author(s):  
Sreeja V K

Let S be a unit regular semigroup with group of units G = G(S) and semilattice of idempotents E = E(S). Then for every there is a such that Then both xu and ux are idempotents and we can write or .Thus every element of a unit regular inverse monoid is a product of a group element and an idempotent. It is evident that every L-class and every R-class contains exactly one idempotent where L and R are two of Greens relations. Since inverse monoids are R unipotent, every element of a unit regular inverse monoid can be written as s = eu where the idempotent part e is unique and u is a unit. A completely regular semigroup is a semigroup in which every element is in some subgroup of the semigroup. A Clifford semigroup is a completely regular inverse semigroup. Characterization of unit regular inverse monoids in terms of the group of units and the semilattice of idempotents is a problem often attempted and in this direction we have studied the structure of unit regular inverse monoids and Clifford monoids. 


2010 ◽  
Vol 17 (02) ◽  
pp. 229-240 ◽  
Author(s):  
Mario Petrich

Any semigroup S can be embedded into a semigroup, denoted by ΨS, having some remarkable properties. For general semigroups there is a close relationship between local submonoids of S and of ΨS. For a number of usual semigroup properties [Formula: see text], we prove that S and ΨS simultaneously satisfy [Formula: see text] or not. For a regular semigroup S, the relationship of S and ΨS is even closer, especially regarding the natural partial order and Green's relations; in addition, every element of ΨS is a product of at most four idempotents. For completely regular semigroups S, the relationship of S and ΨS is still closer. On the lattice [Formula: see text] of varieties of completely regular semigroups [Formula: see text] regarded as algebras with multiplication and inversion, by means of ΨS, we define an operator, denoted by Ψ. We compare Ψ with some of the standard operators on [Formula: see text] and evaluate it on a small sublattice of [Formula: see text].


Author(s):  
P. R. Jones

AbstractSeveral morphisms of this lattice V(CR) are found, leading to decompostions of it, and various sublattices, into subdirect products of interval sublattices. For example the map V → V ∪ G (where G is the variety of groups) is shown to be a retraction of V(CR); from modularity of the lattice V(BG) of varieties of bands of groups it follows that the map V → (V ∪ V V G) is an isomorphism of V(BG).


1998 ◽  
Vol 43 (5) ◽  
pp. 379-381
Author(s):  
Xueming Ren ◽  
Yuqi Guo ◽  
Jiaping Cen

Sign in / Sign up

Export Citation Format

Share Document