unary operation
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 1)

Computability ◽  
2021 ◽  
pp. 1-8
Author(s):  
Pace P. Nielsen

The unary primitive recursive functions can be defined in terms of a finite set of initial functions together with a finite set of unary and binary operations that are primitive recursive in their inputs. We reduce arity considerations, by show that two fixed unary operations suffice, and a single initial function can be chosen arbitrarily. The method works for many other classes of functions, including the unary partial computable functions. For this class of partial functions we also show that a single unary operation (together with any finite set of initial functions) will never suffice.


2021 ◽  
Vol 82 (3) ◽  
Author(s):  
Marco Abbadini

AbstractWe provide a generalization of Mundici’s equivalence between unital Abelian lattice-ordered groups and MV-algebras: the category of unital commutative lattice-ordered monoids is equivalent to the category of MV-monoidal algebras. Roughly speaking, unital commutative lattice-ordered monoids are unital Abelian lattice-ordered groups without the unary operation $$x \mapsto -x$$ x ↦ - x . The primitive operations are $$+$$ + , $$\vee $$ ∨ , $$\wedge $$ ∧ , 0, 1, $$-1$$ - 1 . A prime example of these structures is $$\mathbb {R}$$ R , with the obvious interpretation of the operations. Analogously, MV-monoidal algebras are MV-algebras without the negation $$x \mapsto \lnot x$$ x ↦ ¬ x . The primitive operations are $$\oplus $$ ⊕ , $$\odot $$ ⊙ , $$\vee $$ ∨ , $$\wedge $$ ∧ , 0, 1. A motivating example of MV-monoidal algebra is the negation-free reduct of the standard MV-algebra $$[0, 1]\subseteq \mathbb {R}$$ [ 0 , 1 ] ⊆ R . We obtain the original Mundici’s equivalence as a corollary of our main result.


2020 ◽  
Vol 70 (2) ◽  
pp. 239-250
Author(s):  
Ivan Chajda ◽  
Jan Kühr ◽  
Helmut Länger

Abstract It is known that every relatively pseudocomplemented lattice is residuated and, moreover, it is distributive. Unfortunately, non-distributive lattices with a unary operation satisfying properties similar to relative pseudocomplementation cannot be converted in residuated ones. The aim of our paper is to introduce a more general concept of a relatively residuated lattice in such a way that also non-modular sectionally pseudocomplemented lattices are included. We derive several properties of relatively residuated lattices which are similar to those known for residuated ones and extend our results to posets.


2019 ◽  
Vol 24 (2) ◽  
pp. 723-729
Author(s):  
Ivan Chajda ◽  
Helmut Länger

Abstract In a previous paper, the authors defined two binary term operations in orthomodular lattices such that an orthomodular lattice can be organized by means of them into a left residuated lattice. It is a natural question if these operations serve in this way also for more general lattices than the orthomodular ones. In our present paper, we involve two conditions formulated as simple identities in two variables under which this is really the case. Hence, we obtain a variety of lattices with a unary operation which contains exactly those lattices with a unary operation which can be converted into a left residuated lattice by use of the above mentioned operations. It turns out that every lattice in this variety is in fact a bounded one and the unary operation is a complementation. Finally, we use a similar technique by using simpler terms and identities motivated by Boolean algebras.


2019 ◽  
Vol 69 (3) ◽  
pp. 541-556
Author(s):  
Mario Petrich

Abstract The class 𝒞ℛ of completely regular semigroups considered with the unary operation of inversion within maximal subgroups forms a variety. The B-relation on the lattice ℒ(𝒞ℛ) of subvarieties of 𝒞ℛ identifies two varieties if they contain the same bands. Its classes are intervals with the set Δ of upper ends of these intervals. Canonical varieties form part of Δ. Previously we determined the sublattice Ψ of ℒ(𝒞ℛ) generated by the variety 𝒞𝒮 of completely simple semigroups and six canonical varieties. The conjecture is that the sublattice of ℒ(𝒞ℛ) generated by 𝒞𝒮 and canonical varieties follows the pattern of the structure of Ψ.


2019 ◽  
Vol 23 (22) ◽  
pp. 11351-11356 ◽  
Author(s):  
Ivan Chajda ◽  
Helmut Länger
Keyword(s):  

2018 ◽  
Vol 11 (06) ◽  
pp. 1850097 ◽  
Author(s):  
Ivan Chajda ◽  
Helmut Länger

Using the operators of taking upper and lower cones in a poset with a unary operation, we define operators [Formula: see text] and [Formula: see text] in the sense of multiplication and residuation, respectively, and we show that by using these operators, a general modification of residuation can be introduced. A relatively pseudocomplemented poset can be considered as a prototype of such an operator residuated poset. As main results, we prove that every Boolean poset as well as every pseudo-orthomodular poset can be organized into a (left) operator residuated structure. Some results on pseudo-orthomodular posets are presented which show the analogy to orthomodular lattices and orthomodular posets.


2018 ◽  
Vol 68 (4) ◽  
pp. 713-716
Author(s):  
Ivan Chajda ◽  
Helmut Länger ◽  
Ranganathan Padmanabhan

Abstract In this note we characterize Boolean algebras among lattices of type (2, 2, 1) with join, meet and an additional unary operation by means of single two-variable respectively three-variable identities. In particular, any uniquely complemented lattice satisfying any one of these equational constraints is distributive and hence a Boolean algebra.


2018 ◽  
Vol 106 (1) ◽  
pp. 31-55
Author(s):  
PETER R. JONES

Left restriction semigroups are the unary semigroups that abstractly characterize semigroups of partial maps on a set, where the unary operation associates to a map the identity element on its domain. This paper is the sequel to two recent papers by the author, melding the results of the first, on membership in the variety $\mathbf{B}$ of left restriction semigroups generated by Brandt semigroups and monoids, with the connection established in the second between subvarieties of the variety $\mathbf{B}_{R}$ of two-sided restriction semigroups similarly generated and varieties of categories, in the sense of Tilson. We show that the respective lattices ${\mathcal{L}}(\mathbf{B})$ and ${\mathcal{L}}(\mathbf{B}_{R})$ of subvarieties are almost isomorphic, in a very specific sense. With the exception of the members of the interval $[\mathbf{D},\mathbf{D}\vee \mathbf{M}]$, every subvariety of $\mathbf{B}$ is induced from a member of $\mathbf{B}_{R}$ and vice versa. Here $\mathbf{D}$ is generated by the three-element left restriction semigroup $D$ and $\mathbf{M}$ is the variety of monoids. The analogues hold for pseudovarieties.


2018 ◽  
Vol 11 (3) ◽  
pp. 604-608
Author(s):  
CELIA SCHACHT

AbstractThis article presents an axiom system for an arithmetic of the even and the odd, one that is stronger than those discussed in Pambuccian (2016) and Menn & Pambuccian (2016). It consists of universal sentences in a language extending the usual one with 0, 1, +, ·, <, – with the integer part of the half function $[{ \cdot \over 2}]$, and two unary operation symbols.


Sign in / Sign up

Export Citation Format

Share Document