scholarly journals Algebra Structure on the Hochschild Cohomology of the Ring of Invariants of a Weyl Algebra under a Finite Group

2002 ◽  
Vol 248 (1) ◽  
pp. 291-306 ◽  
Author(s):  
Mariano Suarez Alvarez
ISRN Algebra ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-16
Author(s):  
José O. Araujo ◽  
Luis C. Maiarú ◽  
Mauro Natale

A Gelfand model for a finite group G is a complex representation of G, which is isomorphic to the direct sum of all irreducible representations of G. When G is isomorphic to a subgroup of GLn(ℂ), where ℂ is the field of complex numbers, it has been proved that each G-module over ℂ is isomorphic to a G-submodule in the polynomial ring ℂ[x1,…,xn], and taking the space of zeros of certain G-invariant operators in the Weyl algebra, a finite-dimensional G-space 𝒩G in ℂ[x1,…,xn] can be obtained, which contains all the simple G-modules over ℂ. This type of representation has been named polynomial model. It has been proved that when G is a Coxeter group, the polynomial model is a Gelfand model for G if, and only if, G has not an irreducible factor of type D2n, E7, or E8. This paper presents a model of Gelfand for a Weyl group of type D2n whose construction is based on the same principles as the polynomial model.


2017 ◽  
Vol 29 (3) ◽  
Author(s):  
Constantin-Cosmin Todea

AbstractWe give an explicit approach for Bockstein homomorphisms of the Hochschild cohomology of a group algebra and of a block algebra of a finite group and we show some properties. To give explicit definitions for these maps we use an additive decomposition and a product formula for the Hochschild cohomology of group algebras given by Siegel and Witherspoon in 1999. For an algebraically closed field


Author(s):  
YANJUN LIU ◽  
WOLFGANG WILLEMS

Abstract Similarly to the Frobenius–Schur indicator of irreducible characters, we consider higher Frobenius–Schur indicators $\nu _{p^n}(\chi ) = |G|^{-1} \sum _{g \in G} \chi (g^{p^n})$ for primes p and $n \in \mathbb {N}$ , where G is a finite group and $\chi $ is a generalised character of G. These invariants give answers to interesting questions in representation theory. In particular, we give several characterisations of groups via higher Frobenius–Schur indicators.


2020 ◽  
Vol 18 (1) ◽  
pp. 1742-1747
Author(s):  
Jianjun Liu ◽  
Mengling Jiang ◽  
Guiyun Chen

Abstract A subgroup H of a finite group G is called weakly pronormal in G if there exists a subgroup K of G such that G = H K G=HK and H ∩ K H\cap K is pronormal in G. In this paper, we investigate the structure of the finite groups in which some subgroups are weakly pronormal. Our results improve and generalize many known results.


2021 ◽  
Vol 58 (2) ◽  
pp. 335-346
Author(s):  
Mackenzie Simper

AbstractConsider an urn containing balls labeled with integer values. Define a discrete-time random process by drawing two balls, one at a time and with replacement, and noting the labels. Add a new ball labeled with the sum of the two drawn labels. This model was introduced by Siegmund and Yakir (2005) Ann. Prob.33, 2036 for labels taking values in a finite group, in which case the distribution defined by the urn converges to the uniform distribution on the group. For the urn of integers, the main result of this paper is an exponential limit law. The mean of the exponential is a random variable with distribution depending on the starting configuration. This is a novel urn model which combines multi-drawing and an infinite type of balls. The proof of convergence uses the contraction method for recursive distributional equations.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiakuan Lu ◽  
Kaisun Wu ◽  
Wei Meng

AbstractLet 𝐺 be a finite group. An irreducible character of 𝐺 is called a 𝒫-character if it is an irreducible constituent of (1_{H})^{G} for some maximal subgroup 𝐻 of 𝐺. In this paper, we obtain some conditions for a solvable group 𝐺 to be 𝑝-nilpotent or 𝑝-closed in terms of 𝒫-characters.


Author(s):  
SH. RAHIMI ◽  
Z. AKHLAGHI

Abstract Given a finite group G with a normal subgroup N, the simple graph $\Gamma _{\textit {G}}( \textit {N} )$ is a graph whose vertices are of the form $|x^G|$ , where $x\in {N\setminus {Z(G)}}$ and $x^G$ is the G-conjugacy class of N containing the element x. Two vertices $|x^G|$ and $|y^G|$ are adjacent if they are not coprime. We prove that, if $\Gamma _G(N)$ is a connected incomplete regular graph, then $N= P \times {A}$ where P is a p-group, for some prime p, $A\leq {Z(G)}$ and $\textbf {Z}(N)\not = N\cap \textbf {Z}(G)$ .


Sign in / Sign up

Export Citation Format

Share Document