scholarly journals On Sobolev Orthogonality for the Generalized Laguerre Polynomials

1996 ◽  
Vol 86 (3) ◽  
pp. 278-285 ◽  
Author(s):  
Teresa E. Pérez ◽  
Miguel A. Piñar
Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 984
Author(s):  
Pedro J. Miana ◽  
Natalia Romero

Generalized Laguerre polynomials, Ln(α), verify the well-known Rodrigues’ formula. Using Weyl and Riemann–Liouville fractional calculi, we present several fractional generalizations of Rodrigues’ formula for generalized Laguerre functions and polynomials. As a consequence, we give a new addition formula and an integral representation for these polynomials. Finally, we introduce a new family of fractional Lebesgue spaces and show that some of these special functions belong to them.


2013 ◽  
Vol 22 (01) ◽  
pp. 1350006
Author(s):  
WEI-PING ZHONG

The general spherical beam solution of the three-dimensional (3D) spatiotemporal strongly nonlocal nonlinear (NN) Schrödinger equation in the form of light bullets is presented. The 3D spatiotemporal spherical beams are built by the products of generalized Laguerre polynomials and associated Legendre polynomials. By the choice of a specific integration constant, the spherical beam becomes an accessible soliton, which can exist in various forms. We confirm the existence and stability of these solutions by numerical simulations.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
D. Baleanu ◽  
A. H. Bhrawy ◽  
T. M. Taha

This paper deals with modified generalized Laguerre spectral tau and collocation methods for solving linear and nonlinear multiterm fractional differential equations (FDEs) on the half line. A new formula expressing the Caputo fractional derivatives of modified generalized Laguerre polynomials of any degree and for any fractional order in terms of the modified generalized Laguerre polynomials themselves is derived. An efficient direct solver technique is proposed for solving the linear multiterm FDEs with constant coefficients on the half line using a modified generalized Laguerre tau method. The spatial approximation with its Caputo fractional derivatives is based on modified generalized Laguerre polynomialsLi(α,β)(x)withx∈Λ=(0,∞),α>−1, andβ>0, andiis the polynomial degree. We implement and develop the modified generalized Laguerre collocation method based on the modified generalized Laguerre-Gauss points which is used as collocation nodes for solving nonlinear multiterm FDEs on the half line.


Sign in / Sign up

Export Citation Format

Share Document