scholarly journals Lie Group Structures on Quotient Groups and Universal Complexifications for Infinite-Dimensional Lie Groups

2002 ◽  
Vol 194 (2) ◽  
pp. 347-409 ◽  
Author(s):  
Helge Glöckner
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamza Alzaareer

Abstract We study the existence of Lie group structures on groups of the form C k ⁢ ( M , K ) C^{k}(M,K) , where 𝑀 is a non-compact smooth manifold with rough boundary and 𝐾 is a, possibly infinite-dimensional, Lie group. Motivated by introducing this new class of infinite-dimensional Lie groups, we obtain a new version of the fundamental theorem for Lie algebra-valued functions.


2009 ◽  
Vol 146 (2) ◽  
pp. 351-378 ◽  
Author(s):  
K. H. HOFMANN ◽  
K.-H. NEEB

AbstractA pro-Lie group is a projective limit of a family of finite-dimensional Lie groups. In this paper we show that a pro-Lie group G is a Lie group in the sense that its topology is compatible with a smooth manifold structure for which the group operations are smooth if and only if G is locally contractible. We also characterize the corresponding pro-Lie algebras in various ways. Furthermore, we characterize those pro-Lie groups which are locally exponential, that is, they are Lie groups with a smooth exponential function which maps a zero neighbourhood in the Lie algebra diffeomorphically onto an open identity neighbourhood of the group.


2003 ◽  
Vol 55 (5) ◽  
pp. 969-999 ◽  
Author(s):  
Helge Glöckner

AbstractWe describe new construction principles for infinite-dimensional Lie groups. In particular, given any measure space (X; Σ, μ) and (possibly infinite-dimensional) Lie group G, we construct a Lie group L∞(X; G), which is a Fréchet-Lie group if G is so. We also show that the weak direct product of an arbitrary family (Gi)i∈I of Lie groups can be made a Lie group, modelled on the locally convex direct sum .


2017 ◽  
Vol 319 ◽  
pp. 522-566 ◽  
Author(s):  
Gi-Sang Cheon ◽  
Ana Luzón ◽  
Manuel A. Morón ◽  
L. Felipe Prieto-Martinez ◽  
Minho Song

Author(s):  
Daniel A Ramras ◽  
Mentor Stafa

Abstract In this paper, we study homological stability for spaces $\textrm{Hom}({{\mathbb{Z}}}^n,G)$ of pairwise commuting $n$-tuples in a Lie group $G$. We prove that for each $n\geqslant 1$, these spaces satisfy rational homological stability as $G$ ranges through any of the classical sequences of compact, connected Lie groups, or their complexifications. We prove similar results for rational equivariant homology, for character varieties, and for the infinite-dimensional analogues of these spaces, $\textrm{Comm}(G)$ and $B_{\textrm{com}} G$, introduced by Cohen–Stafa and Adem–Cohen–Torres-Giese, respectively. In addition, we show that the rational homology of the space of unordered commuting $n$-tuples in a fixed group $G$ stabilizes as $n$ increases. Our proofs use the theory of representation stability—in particular, the theory of $\textrm{FI}_W$-modules developed by Church–Ellenberg–Farb and Wilson. In all of the these results, we obtain specific bounds on the stable range, and we show that the homology isomorphisms are induced by maps of spaces.


1999 ◽  
Vol 51 (4) ◽  
pp. 816-834 ◽  
Author(s):  
Brian C. Hall

AbstractI consider a two-parameter family Bs,t of unitary transforms mapping an L2-space over a Lie group of compact type onto a holomorphic L2-space over the complexified group. These were studied using infinite-dimensional analysis in joint work with B. Driver, but are treated here by finite-dimensional means. These transforms interpolate between two previously known transforms, and all should be thought of as generalizations of the classical Segal-Bargmann transform. I consider also the limiting cases s → ∞ and s → t/2.


1992 ◽  
Vol 46 (2) ◽  
pp. 295-310 ◽  
Author(s):  
Jean Marion

Let Γ.𝒜 be the semi-direct product group of a nuclear Lie group Γ with the additive group 𝒜 of a real nuclear vector space. We give an explicit description of all the continuous representations of Γ.𝒜 the restriction of which to 𝒜 is a cyclic unitary representation, and a necessary and sufficient condition for the unitarity of such cylindrical representations is stated. This general result is successfully used to obtain irreducible unitary representations of the nuclear Lie groups of Riemannian motions, and, in the setting of the theory of multiplicative distributions initiated by I.M. Gelfand, it is proved that for any connected real finite dimensional Lie groupGand for any strictly positive integerkthere exist non located and non trivially decomposable representations of orderkof the nuclear Lie group(M;G) of all theG-valued test-functions on a given paracompact manifoldM.


Sign in / Sign up

Export Citation Format

Share Document