scholarly journals Homological Stability for Spaces of Commuting Elements in Lie Groups

Author(s):  
Daniel A Ramras ◽  
Mentor Stafa

Abstract In this paper, we study homological stability for spaces $\textrm{Hom}({{\mathbb{Z}}}^n,G)$ of pairwise commuting $n$-tuples in a Lie group $G$. We prove that for each $n\geqslant 1$, these spaces satisfy rational homological stability as $G$ ranges through any of the classical sequences of compact, connected Lie groups, or their complexifications. We prove similar results for rational equivariant homology, for character varieties, and for the infinite-dimensional analogues of these spaces, $\textrm{Comm}(G)$ and $B_{\textrm{com}} G$, introduced by Cohen–Stafa and Adem–Cohen–Torres-Giese, respectively. In addition, we show that the rational homology of the space of unordered commuting $n$-tuples in a fixed group $G$ stabilizes as $n$ increases. Our proofs use the theory of representation stability—in particular, the theory of $\textrm{FI}_W$-modules developed by Church–Ellenberg–Farb and Wilson. In all of the these results, we obtain specific bounds on the stable range, and we show that the homology isomorphisms are induced by maps of spaces.

1999 ◽  
Vol 51 (4) ◽  
pp. 816-834 ◽  
Author(s):  
Brian C. Hall

AbstractI consider a two-parameter family Bs,t of unitary transforms mapping an L2-space over a Lie group of compact type onto a holomorphic L2-space over the complexified group. These were studied using infinite-dimensional analysis in joint work with B. Driver, but are treated here by finite-dimensional means. These transforms interpolate between two previously known transforms, and all should be thought of as generalizations of the classical Segal-Bargmann transform. I consider also the limiting cases s → ∞ and s → t/2.


1992 ◽  
Vol 46 (2) ◽  
pp. 295-310 ◽  
Author(s):  
Jean Marion

Let Γ.𝒜 be the semi-direct product group of a nuclear Lie group Γ with the additive group 𝒜 of a real nuclear vector space. We give an explicit description of all the continuous representations of Γ.𝒜 the restriction of which to 𝒜 is a cyclic unitary representation, and a necessary and sufficient condition for the unitarity of such cylindrical representations is stated. This general result is successfully used to obtain irreducible unitary representations of the nuclear Lie groups of Riemannian motions, and, in the setting of the theory of multiplicative distributions initiated by I.M. Gelfand, it is proved that for any connected real finite dimensional Lie groupGand for any strictly positive integerkthere exist non located and non trivially decomposable representations of orderkof the nuclear Lie group(M;G) of all theG-valued test-functions on a given paracompact manifoldM.


2009 ◽  
Vol 146 (2) ◽  
pp. 351-378 ◽  
Author(s):  
K. H. HOFMANN ◽  
K.-H. NEEB

AbstractA pro-Lie group is a projective limit of a family of finite-dimensional Lie groups. In this paper we show that a pro-Lie group G is a Lie group in the sense that its topology is compatible with a smooth manifold structure for which the group operations are smooth if and only if G is locally contractible. We also characterize the corresponding pro-Lie algebras in various ways. Furthermore, we characterize those pro-Lie groups which are locally exponential, that is, they are Lie groups with a smooth exponential function which maps a zero neighbourhood in the Lie algebra diffeomorphically onto an open identity neighbourhood of the group.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamza Alzaareer

Abstract We study the existence of Lie group structures on groups of the form C k ⁢ ( M , K ) C^{k}(M,K) , where 𝑀 is a non-compact smooth manifold with rough boundary and 𝐾 is a, possibly infinite-dimensional, Lie group. Motivated by introducing this new class of infinite-dimensional Lie groups, we obtain a new version of the fundamental theorem for Lie algebra-valued functions.


2016 ◽  
Vol 101 (2) ◽  
pp. 253-276 ◽  
Author(s):  
ALEXANDER SCHMEDING ◽  
CHRISTOPH WOCKEL

To a Lie groupoid over a compact base $M$, the associated group of bisection is an (infinite-dimensional) Lie group. Moreover, under certain circumstances one can reconstruct the Lie groupoid from its Lie group of bisections. In the present article we consider functorial aspects of these construction principles. The first observation is that this procedure is functorial (for morphisms fixing $M$). Moreover, it gives rise to an adjunction between the category of Lie groupoids over $M$ and the category of Lie groups acting on $M$. In the last section we then show how to promote this adjunction to almost an equivalence of categories.


2003 ◽  
Vol 55 (5) ◽  
pp. 969-999 ◽  
Author(s):  
Helge Glöckner

AbstractWe describe new construction principles for infinite-dimensional Lie groups. In particular, given any measure space (X; Σ, μ) and (possibly infinite-dimensional) Lie group G, we construct a Lie group L∞(X; G), which is a Fréchet-Lie group if G is so. We also show that the weak direct product of an arbitrary family (Gi)i∈I of Lie groups can be made a Lie group, modelled on the locally convex direct sum .


2020 ◽  
Vol 32 (2) ◽  
pp. 479-489
Author(s):  
Alexander Schmeding

AbstractIn this note we construct an infinite-dimensional Lie group structure on the group of vertical bisections of a regular Lie groupoid. We then identify the Lie algebra of this group and discuss regularity properties (in the sense of Milnor) for these Lie groups. If the groupoid is locally trivial, i.e., a gauge groupoid, the vertical bisections coincide with the gauge group of the underlying bundle. Hence, the construction recovers the well-known Lie group structure of the gauge groups. To establish the Lie theoretic properties of the vertical bisections of a Lie groupoid over a non-compact base, we need to generalise the Lie theoretic treatment of Lie groups of bisections for Lie groupoids over non-compact bases.


1995 ◽  
Vol 18 (3) ◽  
pp. 509-530
Author(s):  
John P. Holmes ◽  
Mitch Anderson

We present here a modern, detailed proof to the following theorem which was introduced by Garrett Birkhoff [1] in 1938. IfSis a local semigroup with neighborhood of1homeomorphic to a Banach space and with multiplication strongly differentiable at1, thenSis a local Lie Group. Although this theorem is more than 50 years old and remains the strongest result relating to Hilbert's fifth problem in the infinite dimensional setting, it is frequently overlooked in favor of weaker results. Therefore, it is the goal of the authors here to clarify its importance and to demonstrate a proofwhich is more accessible to contemporary readers than the one offered by Birkhoff.


Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.


Sign in / Sign up

Export Citation Format

Share Document