scholarly journals On the Stability of Functional Equations in Banach Spaces

2000 ◽  
Vol 251 (1) ◽  
pp. 264-284 ◽  
Author(s):  
Themistocles M Rassias
Author(s):  
Krzysztof Ciepliński

AbstractUsing the fixed point method, we prove the Ulam stability of two general functional equations in several variables in 2-Banach spaces. As corollaries from our main results, some outcomes on the stability of a few known equations being special cases of the considered ones will be presented. In particular, we extend several recent results on the Ulam stability of functional equations in 2-Banach spaces.


2013 ◽  
Vol 29 (1) ◽  
pp. 125-132
Author(s):  
CLAUDIA ZAHARIA ◽  
◽  
DOREL MIHET ◽  

We establish stability results concerning the additive and quadratic functional equations in complete Menger ϕ-normed spaces by using fixed point theory. As particular cases, some theorems regarding the stability of functional equations in β - normed and quasi-normed spaces are obtained.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2229
Author(s):  
Emanuel Guariglia ◽  
Kandhasamy Tamilvanan

This paper deals with the approximate solution of the following functional equation fx7+y77=f(x)+f(y), where f is a mapping from R into a normed vector space. We show stability results of this equation in quasi-β-Banach spaces and (β,p)-Banach spaces. We also prove the nonstability of the previous functional equation in a relevant case.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jaeyoung Chung ◽  
Soon-Yeong Chung

LetSbe a commutative semigroup if not otherwise specified andf:S→ℝ. In this paper we consider the stability of exponential functional equations|f(x+σ(y))-g(x)f(y)|≤ϕ(x)or ϕ(y),|f(x+σ(y))-f(x)g(y)|≤ϕ(x)orϕ(y)for allx,y∈Sand whereσ:S→Sis an involution. As main results we investigate bounded and unbounded functions satisfying the above inequalities. As consequences of our results we obtain the Ulam-Hyers stability of functional equations (Chung and Chang (in press); Chávez and Sahoo (2011); Houston and Sahoo (2008); Jung and Bae (2003)) and a generalized result of Albert and Baker (1982).


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Jung Rye Lee ◽  
Jong Su An ◽  
Choonkil Park

LetX,Ybe vector spaces andka fixed positive integer. It is shown that a mappingf(kx+y)+f(kx-y)=2k2f(x)+2f(y)for allx,y∈Xif and only if the mappingf:X→Ysatisfiesf(x+y)+f(x-y)=2f(x)+2f(y)for allx,y∈X. Furthermore, the Hyers-Ulam-Rassias stability of the above functional equation in Banach spaces is proven.


2017 ◽  
pp. 5054-5061
Author(s):  
Seong Sik Kim ◽  
Ga Ya Kim ◽  
Soo Hwan Kim

In this paper, we investigate the stability problem in the spirit of Hyers-Ulam, Rassias and G·avruta for the quadratic functional equation:f(2x + y) + f(2x ¡ y) = 2f(x + y) + 2f(x ¡ y) + 4f(x) ¡ 2f(y) in 2-Banach spaces. These results extend the generalized Hyers-Ulam stability results by thequadratic functional equation in normed spaces to 2-Banach spaces.


Sign in / Sign up

Export Citation Format

Share Document