A Fixed Point Approach to the Stability of Functional Equations on Noncommutative Spaces

2015 ◽  
Vol 72 (4) ◽  
pp. 1639-1651 ◽  
Author(s):  
Tian-Zhou Xu ◽  
Zhan-Peng Yang
2018 ◽  
Vol 24 (2) ◽  
pp. 155-165
Author(s):  
Iz-iddine EL-Fassi

Abstract Let X be a normed space, {U\subset X\setminus\{0\}} a non-empty subset, and {(G,+)} a commutative group equipped with a complete ultrametric d that is invariant (i.e., {d(x+z,y+z)=d(x,y} ) for {x,y,z\in G} ). Under some weak natural assumptions on U and on the function {\gamma\colon U^{3}\to[0,\infty)} , we study the new generalized hyperstability results when {f\colon U\to G} satisfies the inequality d\biggl{(}\alpha f\biggl{(}\frac{x+y}{\alpha}+z\biggr{)},\alpha f(z)+f(y)+f(x)% \biggr{)}\leq\gamma(x,y,z) for all {x,y,z\in U} , where {\frac{x+y}{\alpha}+z\in U} and {\alpha\geq 2} is a fixed positive integer. The method is based on a quite recent fixed point theorem (Theorem 1 in [J. Brzdȩk and K. Ciepliński, A fixed point approach to the stability of functional equations in non-Archimedean metric spaces, Nonlinear Anal. 74 2011, 18, 6861–6867]) (cf. [8, Theorem 1]) in some functions spaces.


2013 ◽  
Vol 29 (1) ◽  
pp. 125-132
Author(s):  
CLAUDIA ZAHARIA ◽  
◽  
DOREL MIHET ◽  

We establish stability results concerning the additive and quadratic functional equations in complete Menger ϕ-normed spaces by using fixed point theory. As particular cases, some theorems regarding the stability of functional equations in β - normed and quasi-normed spaces are obtained.


2016 ◽  
pp. 4430-4436
Author(s):  
Seong Sik Kim ◽  
Ga Ya Kim

In this paper, we prove the generalized Hyers-Ulam stability of a general k-quadratic Euler-Lagrange functional equation:for any fixed positive integer in intuitionistic fuzzy normed spaces using a fixed point method.


2010 ◽  
Vol 2010 (1) ◽  
pp. 423231 ◽  
Author(s):  
TianZhou Xu ◽  
JohnMichael Rassias ◽  
MatinaJohn Rassias ◽  
WanXin Xu

2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Janusz Brzdęk ◽  
Liviu Cădariu ◽  
Krzysztof Ciepliński

The fixed point method has been applied for the first time, in proving the stability results for functional equations, by Baker (1991); he used a variant of Banach's fixed point theorem to obtain the stability of a functional equation in a single variable. However, most authors follow the approaches involving a theorem of Diaz and Margolis. The main aim of this survey is to present applications of different fixed point theorems to the theory of stability of functional equations, motivated by a problem raised by Ulam in 1940.


2017 ◽  
Vol 6 (1) ◽  
pp. 171-175
Author(s):  
Seong Sik Kim ◽  
Soo Hwan Kim

In this paper, we investigate the generalized Hyers-Ulam-Rassias stability of the following quadratic functional equation f(kx + y) + f(kx – y) = 2k2f(x) + 2f(y) for any fixed positive integers k ∈ Ζ+ in modular spaces by using fixed point method.


Author(s):  
Krzysztof Ciepliński

AbstractUsing the fixed point method, we prove the Ulam stability of two general functional equations in several variables in 2-Banach spaces. As corollaries from our main results, some outcomes on the stability of a few known equations being special cases of the considered ones will be presented. In particular, we extend several recent results on the Ulam stability of functional equations in 2-Banach spaces.


Sign in / Sign up

Export Citation Format

Share Document