scholarly journals An Analogy of Bol's Result on Jacobi Forms and Siegel Modular Forms

2001 ◽  
Vol 257 (1) ◽  
pp. 79-88 ◽  
Author(s):  
Youngju Choie ◽  
Haesuk Kim
2020 ◽  
Vol 26 (5) ◽  
Author(s):  
Tomoyoshi Ibukiyama

AbstractHolomorphic vector valued differential operators acting on Siegel modular forms and preserving automorphy under the restriction to diagonal blocks are important in many respects, including application to critical values of L functions. Such differential operators are associated with vectors of new special polynomials of several variables defined by certain harmonic conditions. They include the classical Gegenbauer polynomial as a prototype, and are interesting as themselves independently of Siegel modular forms. We will give formulas for all such polynomials in two different ways. One is to describe them using polynomials characterized by monomials in off-diagonal block variables. We will give an explicit and practical algorithm to give the vectors of polynomials through these. The other one is rather theoretical but seems much deeper. We construct an explicit generating series of polynomials mutually related under certain mixed Laplacians. Here substituting the variables of the polynomials to partial derivatives, we obtain the generic differential operator from which any other differential operators of this sort are obtained by certain projections. This process exhausts all the differential operators in question. This is also generic in the sense that for any number of variables and block partitions, it is given by a recursive unified expression. As an application, we prove that the Taylor coefficients of Siegel modular forms with respect to off-diagonal block variables, or of corresponding expansion of Jacobi forms, are essentially vector valued Siegel modular forms of lower degrees, which are obtained as images of the differential operators given above. We also show that the original forms are recovered by the images of our operators. This is an ultimate generalization of Eichler–Zagier’s results on Jacobi forms of degree one. Several more explicit results and practical construction are also given.


2014 ◽  
Vol 26 (5) ◽  
Author(s):  
Winfried Kohnen ◽  
Yves Martin

AbstractWe characterize all cusp forms among the degree two Siegel modular forms by the growth of their Fourier coefficients. We also give a similar result for Jacobi forms over the group


2010 ◽  
Vol 06 (07) ◽  
pp. 1677-1687 ◽  
Author(s):  
MICHAEL DEWAR ◽  
OLAV K. RICHTER

We determine conditions for the existence and non-existence of Ramanujan-type congruences for Jacobi forms. We extend these results to Siegel modular forms of degree 2 and as an application, we establish Ramanujan-type congruences for explicit examples of Siegel modular forms.


2005 ◽  
Vol 26 (5) ◽  
pp. 629-650 ◽  
Author(s):  
Koichi Betsumiya ◽  
YoungJu Choie

2000 ◽  
Vol 160 ◽  
pp. 143-159
Author(s):  
Bernhard E. Heim

AbstractIn this paper a certain type of Dirichlet series, attached to a pair of Jacobi forms and Siegel modular forms is studied. It is shown that this series can be analyzed by a new variant of the Rankin-Selberg method. We prove that for eigenforms the Dirichlet series have an Euler product and we calculate all the local L-factors. Globally this Euler product is essentially the quotient of the standard L-functions of the involved Jacobi- and Siegel modular form.


2015 ◽  
Vol 14 (06) ◽  
pp. 1550080
Author(s):  
Anuradha Sharma ◽  
Amit K. Sharma

For a positive integer m, let R be either the ring ℤ2m of integers modulo 2m or the quaternionic ring Σ2m = ℤ2m + αℤ2m + βℤ2m + γℤ2m with α = 1 + î, β = 1 + ĵ and [Formula: see text], where [Formula: see text] are elements of the ring ℍ of real quaternions satisfying [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text]. In this paper, we obtain Jacobi forms (or Siegel modular forms) of genus r from byte weight enumerators (or symmetrized byte weight enumerators) in genus r of Type I and Type II codes over R. Furthermore, we derive a functional equation for partial Epstein zeta functions, which are summands of classical Epstein zeta functions associated with quadratic forms.


2015 ◽  
Vol 3 ◽  
Author(s):  
JAN HENDRIK BRUINIER ◽  
MARTIN WESTERHOLT-RAUM

We prove modularity of formal series of Jacobi forms that satisfy a natural symmetry condition. They are formal analogs of Fourier–Jacobi expansions of Siegel modular forms. From our result and a theorem of Wei Zhang, we deduce Kudla’s conjecture on the modularity of generating series of special cycles of arbitrary codimension and for all orthogonal Shimura varieties.


Sign in / Sign up

Export Citation Format

Share Document