scholarly journals Galois Groups of Second and Third Order Linear Differential Equations

1993 ◽  
Vol 16 (1) ◽  
pp. 9-36 ◽  
Author(s):  
Michael F. Singer ◽  
Felix Ulmer
Author(s):  
N. Parhi

AbstractIn this paper sufficient conditions have been obtained for non-oscillation of non-homogeneous canonical linear differential equations of third order. Some of these results have been extended to non-linear equations.


2018 ◽  
Vol 20 (04) ◽  
pp. 1750038
Author(s):  
Andrei Minchenko ◽  
Alexey Ovchinnikov

Motivated by developing algorithms that decide hypertranscendence of solutions of extensions of the Bessel differential equation, algorithms computing the unipotent radical of a parameterized differential Galois group have been recently developed. Extensions of Bessel’s equation, such as the Lommel equation, can be viewed as homogeneous parameterized linear differential equations of the third order. In this paper, we give the first known algorithm that calculates the differential Galois group of a third-order parameterized linear differential equation.


1988 ◽  
Vol 72 (459) ◽  
pp. 68
Author(s):  
R. L. E. Schwarzenberger ◽  
M. Gregus

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Samir H. Saker ◽  
Mohammed A. Arahet

For the third-order linear differential equations of the formr(t)x′′(t)′+p(t)x′(t)+q(t)x(t)=0, we will establish lower bounds for the distance between zeros of a solution and/or its derivatives. The main results will be proved by making use of Hardy’s inequality and some generalizations of Opial and Wirtinger type inequalities.


2021 ◽  
Vol 40 (5) ◽  
pp. 1301-1321
Author(s):  
Clemente Cesarano ◽  
Mohammed A. Arahet ◽  
Tareq M. Al-Shami

For third order linear differential equations of the form r(t)x'(t)''+ p(t)x'(t) + q(t)x(t) = 0; we will establish lower bounds for the distance between zeros of a solution and/or its derivatives. The main results will be proved by making use of Hardyís inequality, some generalizations of Opialís inequality and Boydís inequality.


Sign in / Sign up

Export Citation Format

Share Document