scholarly journals On the Minimal Realizations of a Finite Sequence

1995 ◽  
Vol 20 (1) ◽  
pp. 93-115 ◽  
Author(s):  
Graham Norton
1960 ◽  
Vol 25 (1) ◽  
pp. 1-26 ◽  
Author(s):  
H. Jerome Keisler

IntroductionWe shall prove the following theorem, which gives a necessary and sufficient condition for an elementary class to be characterized by a set of sentences having a prescribed number of alternations of quantifiers. A finite sequence of relational systems is said to be a sandwich of order n if each is an elementary extension of (i ≦ n—2), and each is an extension of (i ≦ n—2). If K is an elementary class, then the statements (i) and (ii) are equivalent for each fixed natural number n.


1993 ◽  
Vol 29 (3) ◽  
pp. 466-468
Author(s):  
A. A. Letichevskii

1976 ◽  
Vol 13 (2) ◽  
pp. 361-364 ◽  
Author(s):  
M. E. Solari ◽  
J. E. A. Dunnage

We give an expression for the expectation of max (0, S1, …, Sn) where Sk is the kth partial sum of a finite sequence of exchangeable random variables X1, …, Xn. When the Xk are also independent, the formula we give has already been obtained by Spitzer; and when the sequence is a finite segment of an infinite sequence of exchangeable random variables, it is a consequence of a theorem of Hewitt.


2021 ◽  
Vol 10 (5) ◽  
pp. 2537-2548
Author(s):  
K.R. Kumar ◽  
E.N. Satheesh

An eternal $1$-secure set, in a graph $G = (V, E)$ is a set $D \subset V$ having the property that for any finite sequence of vertices $r_1, r_2, \ldots, r_k$ there exists a sequence of vertices $v_1, v_2, \ldots, v_k$ and a sequence $ D = D_0, D_1, D_2, \ldots, D_k$ of dominating sets of $G$, such that for each $i$, $1 \leq i \leq k$, $D_{i} = (D_{i-1} - \{v_i\}) \cup \{r_i\}$, where $v_i \in D_{i-1}$ and $r_i \in N[v_i]$. Here $r_i = v_i$ is possible. The cardinality of the smallest eternal $1$-secure set in a graph $G$ is called the eternal $1$-security number of $G$. In this paper we study a variations of eternal $1$-secure sets named safe eternal $1$-secure sets. A vertex $v$ is safe with respect to an eternal $1$-secure set $S$ if $N[v] \bigcap S =1$. An eternal 1 secure set $S$ is a safe eternal 1 secure set if at least one vertex in $G$ is safe with respect to the set $S$. We characterize the class of graphs having safe eternal $1$-secure sets for which all vertices - excluding those in the safe $1$-secure sets - are safe. Also we introduce a new kind of directed graphs which represent the transformation from one safe 1 - secure set to another safe 1-secure set of a given graph and study its properties.


2014 ◽  
Vol 20 (6) ◽  
pp. 810-818 ◽  
Author(s):  
Wlodzimierz Brzakala ◽  
Aneta Herbut

Parametric vibrations can be observed in cable-stayed bridges due to periodic excitations caused by a deck or a pylon. The vibrations are described by an ordinary differential equation with periodic coefficients. The paper focuses on random excitations, i.e. on the excitation amplitude and the excitation frequency which are two random variables. The excitation frequency ωL is discretized to a finite sequence of representative points, ωL,i Therefore, the problem is (conditionally) formulated and solved as a one-dimensional polynomial chaos expansion generated by the random excitation amplitude. The presented numerical analysis is focused on a real situation for which the problem of parametric resonance was observed (a cable of the Ben-Ahin bridge). The results obtained by the use of the conditional polynomial chaos approximations are compared with the ones based on the Monte Carlo simulation (truly two-dimensional, not conditional one). The convergence of both methods is discussed. It is found that the conditional polynomial chaos can yield a better convergence then the Monte Carlo simulation, especially if resonant vibrations are probable.


2013 ◽  
Vol 464 ◽  
pp. 352-357
Author(s):  
Pasura Aungkulanon

The engineering optimization problems are large and complex. Effective methods for solving these problems using a finite sequence of instructions can be categorized into optimization and meta-heuristics algorithms. Meta-heuristics techniques have been proved to solve various real world problems. In this study, a comparison of two meta-heuristic techniques, namely, Global-Best Harmony Search algorithm (GHSA) and Bat algorithm (BATA), for solving constrained optimization problems was carried out. GHSA and BATA are optimization algorithms inspired by the structure of harmony improvisation search process and social behavior of bat echolocation for decision direction. These algorithms were implemented under different natures of three optimization, which are single-peak, multi-peak and curved-ridge response surfaces. Moreover, both algorithms were also applied to constrained engineering problems. The results from non-linear continuous unconstrained functions in the context of response surface methodology and constrained problems can be shown that Bat algorithm seems to be better in terms of the sample mean and variance of design points yields and computation time.


Sign in / Sign up

Export Citation Format

Share Document