scholarly journals Visualizations for Mathematics Courses Based on a Computer Algebra System

1997 ◽  
Vol 23 (5-6) ◽  
pp. 447-452 ◽  
Author(s):  
BEATRICE AMRHEIN ◽  
OLIVER GLOOR ◽  
ROMAN E. MAEDER
2005 ◽  
Vol 34 (2) ◽  
pp. 177-188
Author(s):  
Arthur Nunes-Harwitt

Computer algebra systems are being used more and more frequently in mathematics courses of all levels. For instructors to use these systems effectively, they need to have an idea of how the systems work. To illuminate the mechanics, the implementation of a simple computer algebra system will be described. Further, if instructors understand the methods used by computers, they may find the ideas involved useful for human students even without computers. A lesson plan will be described that is aimed at students with little or no algebra background followed by a discussion of the author's experience using this lesson in the classroom.


1998 ◽  
Vol 37 (03) ◽  
pp. 235-238 ◽  
Author(s):  
M. El-Taha ◽  
D. E. Clark

AbstractA Logistic-Normal random variable (Y) is obtained from a Normal random variable (X) by the relation Y = (ex)/(1 + ex). In Monte-Carlo analysis of decision trees, Logistic-Normal random variates may be used to model the branching probabilities. In some cases, the probabilities to be modeled may not be independent, and a method for generating correlated Logistic-Normal random variates would be useful. A technique for generating correlated Normal random variates has been previously described. Using Taylor Series approximations and the algebraic definitions of variance and covariance, we describe methods for estimating the means, variances, and covariances of Normal random variates which, after translation using the above formula, will result in Logistic-Normal random variates having approximately the desired means, variances, and covariances. Multiple simulations of the method using the Mathematica computer algebra system show satisfactory agreement with the theoretical results.


1995 ◽  
Vol 10 (3) ◽  
pp. 329-337 ◽  
Author(s):  
John Hutton ◽  
James Hutton

2020 ◽  
Vol 9 (1) ◽  
pp. 53
Author(s):  
Kamhar Ngado ◽  
Rosnawati Rosnawati ◽  
Heri Retnawati ◽  
Sri Andayani

2021 ◽  
Vol 254 ◽  
pp. 02006
Author(s):  
Liubov Feshchenko ◽  
Gleb Vodinchar

The paper describes a technology for the automated compilation of equations for shell models of turbulence in the computer algebra system Maple. A general form of equations for the coefficients of nonlinear interactions is given, which will ensure that the required combination of quadratic invariants and power-law solutions is fulfilled in the model. Described the codes for the Maple system allowing to generate and solve systems of equations for the coefficients. The proposed technology allows you to quickly and accurately generate classes of shell models with the desired properties.


2012 ◽  
Vol 56 (1) ◽  
pp. 139-144
Author(s):  
Dumitru N. Vulcanov ◽  
Remus-Ştefan Ş. Boată

AbstractThe article presents some new aspects and experience on the use of computer in teaching general relativity and cosmology for undergraduate students (and not only) with some experience in computer manipulation. Some years ago certain results were reported [1] using old fashioned computer algebra platforms but the growing popularity of graphical platforms as Maple and Mathematica forced us to adapt and reconsider our methods and programs. We will describe some simple algebraic programming procedures (in Maple with GrTensorII package) for obtaining and the study of some exact solutions of the Einstein equations in order to convince a dedicated student in general relativity about the utility of a computer algebra system.


Sign in / Sign up

Export Citation Format

Share Document