Structural changes underlying long-term memory storage in Aplysia: a molecular perspective

1994 ◽  
Vol 6 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Craig H. Bailey ◽  
Eric R. Kandel
Author(s):  
Mohammad B. Azzam ◽  
Ronald A. Easteal

AbstractClearly, memory and learning are essential to medical education. To make memory and learning more robust and long-term, educators should turn to the advances in neuroscience and cognitive science to direct their efforts. This paper describes the memory pathways and stages with emphasis leading to long-term memory storage. Particular stress is placed on this storage as a construct known as schema. Leading from this background, several pedagogical strategies are described: cognitive load, dual encoding, spiral syllabus, bridging and chunking, sleep consolidation, and retrieval practice.


2013 ◽  
Vol 4 (1) ◽  
pp. 1-9
Author(s):  
Fitriati

Memory obviously plays an important role in knowledge retention. In particular, when learning mathematics students claim that much of what is taught in classrooms is soon forgotten and learning mathematics is difficult or not interesting. Neuroscience, through its study on long term memory, has tried to identify why these phenomena occur. Then some possible solutions are suggested. Understanding the processes of memory storage including acquisition, consolidation, recoding, storing and retrieval helps teachers to efficiently plan for effective learning activities. Therefore, this paper outlines the potential implication of long term memory to mathematics learning as well as suggests some learning strategies that might solve students‟ and teachers‟ problem in learning mathematics.


2019 ◽  
Vol 17 (3) ◽  
Author(s):  
Seyed Amir Hossein Batouli ◽  
Minoo Sisakhti

Author(s):  
Jennifer H.K. Choi ◽  
Ted Abel

RNA Biology ◽  
2013 ◽  
Vol 10 (12) ◽  
pp. 1765-1770 ◽  
Author(s):  
Sathyanarayanan V Puthanveettil

1992 ◽  
Vol 119 (5) ◽  
pp. 1069-1076 ◽  
Author(s):  
D Kuhl ◽  
T E Kennedy ◽  
A Barzilai ◽  
E R Kandel

Long-term memory for sensitization of the gill- and siphon-withdrawal reflexes in Aplysia californica requires RNA and protein synthesis. These long-term behavioral changes are accompanied by long-term facilitation of the synaptic connections between the gill and siphon sensory and motor neurons, which are similarly dependent on transcription and translation. In addition to showing an increase in over-all protein synthesis, long-term facilitation is associated with changes in the expression of specific early, intermediate, and late proteins, and with the growth of new synaptic connections between the sensory and motor neurons of the reflex. We previously focused on early proteins and have identified four proteins as members of the immunoglobulin family of cell adhesion molecules related to NCAM and fasciclin II. We have now cloned the cDNA corresponding to one of the late proteins, and identified it as the Aplysia homolog of BiP, an ER resident protein involved in the folding and assembly of secretory and membrane proteins. Behavioral training increases the steady-state level of BiP mRNA in the sensory neurons. The increase in the synthesis of BiP protein is first detected 3 h after the onset of facilitation, when the increase in overall protein synthesis reaches its peak and the formation of new synaptic terminals becomes apparent. These findings suggest that the chaperon function of BiP might serve to fold proteins and assemble protein complexes necessary for the structural changes characteristic of long-term memory.


Sign in / Sign up

Export Citation Format

Share Document