Characterization of the Moloney Murine Leukemia Virus Stem Cell-Specific Repressor Binding Site

Virology ◽  
1993 ◽  
Vol 193 (2) ◽  
pp. 690-699 ◽  
Author(s):  
Geraldine Kempler ◽  
Breton Freitag ◽  
Brent Berwin ◽  
Oliver Nanassy ◽  
Eric Barklis
2015 ◽  
Vol 113 ◽  
pp. 44-50 ◽  
Author(s):  
Kosaku Nishimura ◽  
Kanta Yokokawa ◽  
Tetsuro Hisayoshi ◽  
Kosuke Fukatsu ◽  
Ikumi Kuze ◽  
...  

1990 ◽  
Vol 10 (8) ◽  
pp. 4045-4057 ◽  
Author(s):  
T P Loh ◽  
L L Sievert ◽  
R W Scott

A negative regulatory element (NRE) spanning the tRNA primer-binding site (PBS) of Moloney murine leukemia virus (M-MuLV) mediates repression of M-MuLV expression specifically in embryonal carcinoma (EC) cells. We precisely defined the element by base-pair mutagenesis to an 18-base-pair segment of the tRNA PBS and showed that the element also restricted expression when moved upstream of the long terminal repeat. A DNA-binding activity specific for the M-MuLV NRE was detected in vitro by using crude EC nuclear extracts in exonuclease III protection assays. Binding was strongly correlated with repression in EC cells. Mutations within the NRE that relieved repression disrupted binding activity. Also, nuclear extracts prepared from permissive, differentiated EC cell cultures showed reduced binding activity for the NRE. These results indicate the presence of a stem cell-specific repressor that extinguishes M-MuLV expression via the NRE at the tRNA PBS.


2003 ◽  
Vol 77 (17) ◽  
pp. 9439-9450 ◽  
Author(s):  
Dennis L. Haas ◽  
Carolyn Lutzko ◽  
Aaron C. Logan ◽  
Gerald J. Cho ◽  
Dianne Skelton ◽  
...  

ABSTRACT The Moloney murine leukemia virus (MLV) repressor binding site (RBS) is a major determinant of restricted expression of MLV in undifferentiated mouse embryonic stem (ES) cells and mouse embryonal carcinoma (EC) lines. We show here that the RBS repressed expression when placed outside of its normal MLV genome context in a self-inactivating (SIN) lentiviral vector. In the lentiviral vector genome context, the RBS repressed expression of a modified MLV long terminal repeat (MNDU3) promoter, a simian virus 40 promoter, and three cellular promoters: ubiquitin C, mPGK, and hEF-1a. In addition to repressing expression in undifferentiated ES and EC cell lines, we show that the RBS substantially repressed expression in primary mouse embryonic fibroblasts, primary mouse bone marrow stromal cells, whole mouse bone marrow and its differentiated progeny after bone marrow transplant, and several mouse hematopoietic cell lines. Using an electrophoretic mobility shift assay, we show that binding factor A, the trans-acting factor proposed to convey repression by its interaction with the RBS, is present in the nuclear extracts of all mouse cells we analyzed where expression was repressed by the RBS. In addition, we show that the RBS partially repressed expression in the human hematopoietic cell line DU.528 and primary human CD34+ CD38− hematopoietic cells isolated from umbilical cord blood. These findings suggest that retroviral vectors carrying the RBS are subjected to high rates of repression in murine and human cells and that MLV vectors with primer binding site substitutions that remove the RBS may yield more-effective gene expression.


Virology ◽  
1978 ◽  
Vol 85 (1) ◽  
pp. 211-221 ◽  
Author(s):  
Stephen K. Swanson ◽  
Eugene Sulkowski ◽  
Kenneth F. Manly

2006 ◽  
Vol 80 (1) ◽  
pp. 342-352 ◽  
Author(s):  
Andrew Yueh ◽  
Juliana Leung ◽  
Subarna Bhattacharyya ◽  
Lucy A. Perrone ◽  
Kenia de los Santos ◽  
...  

ABSTRACT Yeast two-hybrid screens led to the identification of Ubc9 and PIASy, the E2 and E3 small ubiquitin-like modifier (SUMO)-conjugating enzymes, as proteins interacting with the capsid (CA) protein of the Moloney murine leukemia virus. The binding site in CA for Ubc9 was mapped by deletion and alanine-scanning mutagenesis to a consensus motif for SUMOylation at residues 202 to 220, and the binding site for PIASy was mapped to residues 114 to 176, directly centered on the major homology region. Expression of CA and a tagged SUMO-1 protein resulted in covalent transfer of SUMO-1 to CA in vivo. Mutations of lysine residues to arginines near the Ubc9 binding site and mutations at the PIASy binding site reduced or eliminated CA SUMOylation. Introduction of these mutations into the complete viral genome blocked virus replication. The mutants exhibited no defects in the late stages of viral gene expression or virion assembly. Upon infection, the mutant viruses were able to carry out reverse transcription to synthesize normal levels of linear viral DNA but were unable to produce the circular viral DNAs or integrated provirus normally found in the nucleus. The results suggest that the SUMOylation of CA mediated by an interaction with Ubc9 and PIASy is required for early events of infection, after reverse transcription and before nuclear entry and viral DNA integration.


Sign in / Sign up

Export Citation Format

Share Document