gag polyprotein
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 24)

H-INDEX

37
(FIVE YEARS 3)

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2389
Author(s):  
Aaron R. D’Souza ◽  
Dhivya Jayaraman ◽  
Ziqi Long ◽  
Jingwei Zeng ◽  
Liam J. Prestwood ◽  
...  

HIV-1 packages two copies of its gRNA into virions via an interaction with the viral structural protein Gag. Both copies and their native RNA structure are essential for virion infectivity. The precise stepwise nature of the packaging process has not been resolved. This is largely due to a prior lack of structural techniques that follow RNA structural changes within an RNA–protein complex. Here, we apply the in-gel SHAPE (selective 2’OH acylation analysed by primer extension) technique to study the initiation of HIV-1 packaging, examining the interaction between the packaging signal RNA and the Gag polyprotein, and compare it with that of the NC domain of Gag alone. Our results imply interactions between Gag and monomeric packaging signal RNA in switching the RNA conformation into a dimerisation-competent structure, and show that the Gag–dimer complex then continues to stabilise. These data provide a novel insight into how HIV-1 regulates the translation and packaging of its genome.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1502
Author(s):  
Mathieu Long ◽  
Johan Toesca ◽  
Christophe Guillon

The Gag polyprotein is implied in the budding as well as the establishment of the supramolecular architecture of infectious retroviral particles. It is also involved in the early phases of the replication of retroviruses by protecting and transporting the viral genome towards the nucleus of the infected cell until its integration in the host genome. Therefore, understanding the structure–function relationships of the Gag subunits is crucial as each of them can represent a therapeutic target. Though the field has been explored for some time in the area of Human Immunodeficiency Virus (HIV), it is only in the last decade that structural data on Feline Immunodeficiency Virus (FIV) Gag subunits have emerged. As FIV is an important veterinary issue, both in domestic cats and endangered feline species, such data are of prime importance for the development of anti-FIV molecules targeting Gag. This review will focus on the recent advances and perspectives on the structure–function relationships of each subunit of the FIV Gag polyprotein.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1922
Author(s):  
Ying Wang ◽  
Chao Guo ◽  
Xing Wang ◽  
Lianmei Xu ◽  
Rui Li ◽  
...  

The nucleocapsid (NC) protein of human immunodeficiency (HIV) is a small, highly basic protein containing two CCHC zinc-finger motifs, which is cleaved from the NC domain of the Gag polyprotein during virus maturation. We previously reported that recombinant HIV-1 Gag and NCp7 overexpressed in an E. coli host contains two and one zinc ions, respectively, and Gag exhibited much higher selectivity for packaging signal (Psi) and affinity for the stem-loop (SL)-3 of Psi than NCp7. In this study, we prepared NCp7 containing 0 (0NCp7), 1 (NCp7) or 2 (2NCp7) zinc ions, and compared their secondary structure, Psi-selectivity and SL3-affinity. Along with the decrease of the zinc content, less ordered conformations were detected. Compared to NCp7, 2NCp7 exhibited a much higher Psi-selectivity and SL3-affinity, similar to Gag, whereas 0NCp7 exhibited a lower Psi-selectivity and SL3-affinity, similar to the H23&H44K double mutant of NCp7, indicating that the different RNA-binding property of Gag NC domain and the mature NCp7 may be resulted, at least partially, from their different zinc content. This study will be helpful to elucidate the critical roles that zinc played in the viral life cycle, and benefit further investigations of the functional switch from the NC domain of Gag to the mature NCp7.


2021 ◽  
Vol 118 (37) ◽  
pp. e2112475118
Author(s):  
Pengfei Ding ◽  
Siarhei Kharytonchyk ◽  
Nansen Kuo ◽  
Emily Cannistraci ◽  
Hana Flores ◽  
...  

HIV-1 selectively packages two copies of its 5′-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5′ leader of the viral RNA. Although residues within the leader that promote packaging have been identified, the determinants of authentic packaging fidelity and efficiency remain unknown. Here, we show that a previously characterized 159-nt region of the leader that possesses all elements required for RNA dimerization, high-affinity NC binding, and packaging in a noncompetitive RNA packaging assay (ΨCES) is unexpectedly poorly packaged when assayed in competition with the intact 5′ leader. ΨCES lacks a 5′-tandem hairpin element that sequesters the 5′ cap, suggesting that cap sequestration may be important for packaging. Consistent with this hypothesis, mutations within the intact leader that expose the cap without disrupting RNA structure or NC binding abrogated RNA packaging, and genetic addition of a 5′ ribozyme to ΨCES to enable cotranscriptional shedding of the 5′ cap promoted ΨCES-mediated RNA packaging to wild-type levels. Additional mutations that either block dimerization or eliminate subsets of NC binding sites substantially attenuated competitive packaging. Our studies indicate that packaging is achieved by a bipartite mechanism that requires both sequestration of the 5′ cap and exposure of NC binding sites that reside fully within the ΨCES region of the dimeric leader. We speculate that cap sequestration prevents irreversible capture by the cellular RNA processing and translation machinery, a mechanism likely employed by other viruses that package 5′-capped RNA genomes.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1294
Author(s):  
Alexej Dick ◽  
Simon Cocklin

The HIV-1 Gag polyprotein plays essential roles during the late stage of the HIV-1 replication cycle, and has recently been identified as a promising therapeutic target. The N-terminal portion of the HIV-1 Gag polyprotein encodes the myristoylated matrix (MA) protein, which functions in the trafficking of the structural proteins to the plasma membrane (PM) and facilitation of envelope incorporation into budding virus. Numerous host cell proteins interact with the MA portion of the Gag polyprotein during this process. One such factor is the ubiquitous calcium-binding protein calmodulin (CaM), which interacts preferentially with myristoylated proteins, thereby regulating cell physiology. The exact role of this interaction is poorly understood to date. Atomic resolution structures revealed the nature of the CaM-MA interaction for clade B isolates. In this study, we expanded our knowledge and characterized biophysically and computationally the CaM interaction with MA from other HIV-1 clades and discovered differences in the CaM recognition as compared to the prototypical clade B MA., with significant alterations in the interaction with the MA protein from clade C. Structural investigation and in silico mutational analysis revealed that HIV-1 MA protein from clade C, which is responsible for the majority of global HIV-1 infections, interacts with lower affinity and altered kinetics as compared to the canonical clade B. This finding may have implications for additional altered interaction networks as compared to the well-studied clade B. Our analysis highlights the importance of expanding investigations of virus-host cell factor interaction networks to other HIV-1 clades.


2021 ◽  
Author(s):  
Alexander J. Pak ◽  
Michael D. Purdy ◽  
Mark Yeager ◽  
Gregory A. Voth

The assembly and maturation of human immunodeficiency virus type-1 (HIV-1) requires proteolytic cleavage of the Gag polyprotein. The rate-limiting step resides at the junction between the capsid protein CA and spacer peptide 1, which assembles as a six-helix bundle (6HB). bevirimat (BVM), the first-in-class maturation inhibitor drug, targets the 6HB and impedes proteolytic cleavage, yet the molecular mechanisms of its activity, and relatedly, the escape mechanisms of mutant viruses, remain unclear. Here, we employed extensive molecular dynamics (MD) simulations and free energy calculations to quantitatively investigate molecular structure-activity relationships, comparing wild-type and mutant viruses in the presence and absence of BVM and inositol hexakisphosphate (IP6), an assembly cofactor. Our analysis shows that the efficacy of BVM is directly correlated with preservation of six-fold symmetry in the 6HB, which exists as an ensemble of structural states. We identified two primary escape mechanisms, and both lead to loss of symmetry, thereby facilitating helix uncoiling to aid access of protease. Our findings also highlight specific interactions that can be targeted for improved inhibitor activity and support the use of MD simulations for future inhibitor design.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 253
Author(s):  
Mohammed Othman Aljahdali ◽  
Mohammad Habibur Rahman Molla ◽  
Foysal Ahammad

Walleye dermal sarcoma virus (WDSV) is a type of retrovirus, which affects most of the adult walleye fishes during the spawning time. The virus causes multiple epithelial tumors on the fish’s skin and fins that are liable for more than 50% of the mortality rate of fish around the world. Till now, no effective antiviral drug or vaccine candidates have been developed that can block the progression of the disease caused by the pathogen. It was found that the 582-amino-acid (aa) residues long internal structural gag polyprotein of the virus plays an important role in virus budding and virion maturation outside of the cell. Inhibition of the protein can block the budding and virion maturation process and can be developed as an antiviral drug candidate against the virus. Therefore, the study aimed to identify potential natural antiviral drug candidates from the tropical mangrove marine plant Avicennia alba, which will be able to block the budding and virion maturation process by inhibiting the activity of the gag protein of the virus. Initially, a homology modeling approach was applied to identify the 3D structure, followed by refinement and validation of the protein. The refined protein structures were then utilized for molecular docking simulation. Eleven phytochemical compounds have been isolated from the marine plant and docked against the virus gag polyprotein. Three compounds, namely Friedlein (CID244297), Phytosterols (CID12303662), and 1-Triacontanol (CID68972) have been selected based on their docking score −8.5 kcal/mol, −8.0 kcal/mol and −7.9 kcal/mol, respectively, and were evaluated through ADME (Absorption, Distribution, Metabolism and Excretion), and toxicity properties. Finally, molecular dynamics (MD) simulation was applied to confirm the binding stability of the protein-ligands complex structure. The ADME and toxicity analysis reveal the efficacy and non-toxic properties of the compounds, where MD simulation confirmed the binding stability of the selected three compounds with the targeted protein. This computational study revealed the virtuous value of the selected three compounds against the targeted gag polyprotein and will be effective and promising antiviral candidates against the pathogen in a significant and worthwhile manner. Although in vitro and in vivo study is required for further evaluation of the compounds against the targeted protein.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 100
Author(s):  
Eric Rossi ◽  
Megan E. Meuser ◽  
Camille J. Cunanan ◽  
Simon Cocklin

The capsid (CA) protein of the human immunodeficiency virus type 1 (HIV-1) is an essential structural component of a virion and facilitates many crucial life cycle steps through interactions with host cell factors. Capsid shields the reverse transcription complex from restriction factors while it enables trafficking to the nucleus by hijacking various adaptor proteins, such as FEZ1 and BICD2. In addition, the capsid facilitates the import and localization of the viral complex in the nucleus through interaction with NUP153, NUP358, TNPO3, and CPSF-6. In the later stages of the HIV-1 life cycle, CA plays an essential role in the maturation step as a constituent of the Gag polyprotein. In the final phase of maturation, Gag is cleaved, and CA is released, allowing for the assembly of CA into a fullerene cone, known as the capsid core. The fullerene cone consists of ~250 CA hexamers and 12 CA pentamers and encloses the viral genome and other essential viral proteins for the next round of infection. As research continues to elucidate the role of CA in the HIV-1 life cycle and the importance of the capsid protein becomes more apparent, CA displays potential as a therapeutic target for the development of HIV-1 inhibitors.


2020 ◽  
Author(s):  
Carla Mavian ◽  
Roxana M Coman ◽  
Ben M Dunn ◽  
Maureen M Goodenow

AbstractSubtype C and A HIV-1 strains dominate the epidemic in Africa and Asia, while sub-subtype A2 is found at low frequency only in West Africa. To relate Gag processing in vitro with viral fitness, viral protease (PR) enzymatic activity and in vitro Gag processing were evaluated. The rate of sub-subtype A2 Gag polyprotein processing, as production of the p24 protein, was reduced compared to subtype B or C independent of PR subtype, indicating that subtype A2 Gag qualitatively differed from other subtypes. Introduction of subtype B matrix-capsid cleavage site in sub-subtype A2 Gag only partially restored the processing rate. Unique amino acid polymorphism V124S at the matrix-capsid cleavage site, together with other polymorphisms at non-cleavage sites, are differentially influencing the processing of Gag polyproteins. This genetic polymorphisms landscape defining HIV-1 sub-subtypes, subtypes and recombinant forms are determinants of viral fitness and frequency in the HIV-1 infected population.Graphical AbstractHighlightsThe polymorphism at matrix-capsid cleavage site, together with non-cleavage sites polymorphisms, direct the processing rate of the substrate, not the intrinsic activity of the enzyme.The less prevalent and less infectious sub-subtype A2 harbors the matrix-capsid cleavage site polymorphism that we report as a limiting factor for gag processing.Sub-subtype A2 Gag polyprotein processing rate is independent of the PR subtype.


2020 ◽  
Author(s):  
Chiyu Zhang ◽  
Donald R. Forsdyke

ABSTRACTBase order, not composition, best reflects local evolutionary pressure for folding of single-stranded nucleic acids. The base order-dependent component of folding energy has revealed a highly conserved region in HIV-1 genomes that associates with RNA structure. This corresponds to a packaging signal that is recognized by the nucleocapsid domain of the Gag polyprotein. Long viewed as a potential HIV-1 “Achilles heel,” the signal can be targeted by a recently described antiviral compound (NSC 260594) or by synthetic oligonucleotides. Thus, a conserved base-order-rich region of HIV-1 may facilitate therapeutic attack. Although SARS-CoV-2 differs in many respects from HIV-1, the same technology displays regions with a high base order-dependent folding energy component, which are also highly conserved. This indicates structural invariance (SI) sustained by natural selection. While the regions are often also protein-encoding (e.g. NSP3, ORF3a), we suggest that their nucleic acid level functions – such as the ribosomal frameshifting element (FSE) that facilitates differential expression of 1a and 1ab polyproteins – can be considered potential “Achilles heels” for SARS-CoV-2, perhaps susceptible to therapies like those envisaged for AIDS. The region of the FSE scored well, but higher SI scores were obtained in other regions, including those encoding NSP13 and the nucleocapsid (N) protein.


Sign in / Sign up

Export Citation Format

Share Document